Research Staff

Robin Bedilion

Principal Technical Leader

Robin Bedilion is a Principal Technical Leader in the Energy Systems and Climate Analysis group at the Electric Power Research Institute (EPRI). Ms. Bedilion conducts technoeconomic analyses and cost and performance research evaluating current and emerging power sector technologies to support utility resource planning and EPRI's energy-economy modeling efforts.

Prior to joining the Energy Systems and Climate Analysis group, Ms. Bedilion was most recently in EPRI's Renewable Generation program, where her research focused on Renewables Economics, including current and projected capital, O&M, and levelized costs of electricity of renewable generation resources, as well as emerging technology trends and business models. She also worked in EPRI's Technology Innovation program where she was responsible for coordinating and conducting EPRI's Thought Leadership activities and was involved in EPRI's Innovation Scouting activities. She joined EPRI in 2007 as a project engineer in EPRI's Generation sector, supporting engineering and economic evaluations under EPRI's Technical Assessment Guide (TAG), CoalFleet, and Renewables programs.

Ms. Bedilion earned a bachelor's degree in mechanical engineering from Santa Clara University and a master's degree in mechanical engineering with a focus on energy systems from Stanford University.

John Bistline

Program Manager

Dr. John Bistline is a Program Manager in the Energy Systems and Climate Analysis Group at the Electric Power Research Institute (EPRI). His research analyzes the economic and environmental effects of policy and technological development to inform energy systems planning and company strategy. Dr. Bistline's current research activities examine renewable integration, energy storage modeling, electrification, and the impacts of federal and state climate policies. He is a contributing author for the Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report, Working Group III chapter on energy systems.

Before joining EPRI, he worked for the Energy Modeling Forum and the Steyer-Taylor Center for Energy Policy and Finance at Stanford University. His dissertation focused on uncertainty analysis in the electric power sector and investigated questions related to capacity planning and R&D portfolio management. He also worked on projects in areas of climate policy, technological change, uncertainty quantification, and risk assessment.

Dr. Bistline earned a Bachelor of Science degree in Mechanical Engineering and Engineering and Public Policy from Carnegie Mellon University, a Master of Science degree in Mechanical Engineering, and a doctorate in Management Science and Engineering from Stanford University.

Recent Publications

Geoffrey J. Blanford

Senior Technical Executive

Dr. Geoffrey J. Blanford is a leading expert on integrated assessment and energy economy modeling.

His research activities include development of analytical tools such as the MERGE model and the US-REGEN model with applications including electricity markets, end-use electrification, and international climate policy.

Dr. Blanford is a Technical Executive and Program Manager for Energy and Climate Policy Analysis with the Electric Power Research Institute (EPRI) in Palo Alto, CA, where he has worked since 2006. He was a lead author for the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report and serves as co-director of the International Energy Workshop (IEW). He holds a B.A. in mathematics from Yale University, a M.S. in operations research from Columbia University, and a Ph.D. in management science and engineering from Stanford University.

Recent Publications

  • Bistline, J.E. and G.J. Blanford, 2016. More than one arrow in the quiver: Why "100% Renewables" misses the mark. Proceedings of the National Academy of Sciences.
  • Blanford, G.J, J.H. Merrick, and D. Young, 2014. A Clean Energy Standard Analysis with the US-REGEN Model. The Energy Journal 35, pp 137-164,
  • Blanford, G.J, E. Kriegler, and M. Tavoni, 2014. Harmonization vs. Fragmentation: An Overview of Climate Policy Scenarios in EMF27. Climatic Change 123, pp 383-396.

Steven Dahlke

Engineer/Scientist III

Steven Dahlke is an Engineer/Scientist III in the Energy Systems and Climate Analysis Group at the Electric Power Research Institute, supporting EPRI’s research on integrated planning for decarbonization and linking electric sector planning models.

Prior to joining EPRI, Steven was a Senior Economist at the Colorado Public Utilities Commission, where he worked on regulatory matters including electric resource planning, rate case proceedings, economic development, power plant and renewable energy economics, regional energy markets, and more. He has over a decade of experience in the energy sector across non-profit, research, and government sectors. Steven holds a Ph.D. in Mineral and Energy Economics from the Colorado School of Mines, and a B.A. in Environmental Studies from St. John’s University.

Recent Publications

  • Dahlke & Morjaria, (2020). The Economics of Flexible Solar for Electricity Markets in Transition, 2020, Technical Report, First Solar.
  • Jiang, O’Neill, Zoraghein, & Dahlke, (2020). Population Scenarios for US states consistent with shared socioeconomic pathways. Environmental Research Letters.
  • Mosovsky & Dahlke, (2020). Retail Rate Structures for Electric Distribution Networks in Transition: A Case for Automation. IAEE Energy Forum.
  • Dahlke & Prorok (2019). Consumer Savings, Price and Emissions Impacts of Increasing Demand Response in the Midcontinent Electricity Market. The Energy Journal.

Adam Diamant

Technical Executive

Adam Diamant is a Technical Executive in the Energy Systems and Climate Analysis group. Currently, Mr. Diamant leads EPRI’s research and technical support related to corporate greenhouse gas emissions accounting and emissions offsets and provides analysis supporting EPRI’s research on emissions trading and related energy and climate policy research. For the past five years, Mr. Diamant managed research Program 178 on Resource Planning for Electric Power Systems. This program is focused on developing new, innovative methods and approaches to address emerging analytic challenges to long-term integrated energy system planning and improving understanding of the economic cost and technical performance of power generation and energy storage technologies.

Mr. Diamant's current research addresses evolving electric company resource planning challenges related to supporting including the rapid deployment of renewable and distributed energy resources (DER). His work focuses on developing more closely integrated generation, transmission, distribution planning processes and methods. Mr. Diamant develops manages multi-year research projects, data and information, and improves analytic tools and methods electric companies use to make strategic decisions to respond to the ongoing evolution of fuel and power markets and climate policies.

Prior to joining EPRI, Mr. Diamant was a career professional staff member in the Office of Management and Budget (OMB) in the Executive Office of the President of the United States, where he was responsible for oversight of all regulatory programs of the U.S. Department of the Interior and the U.S. Forest Service. Mr. Diamant earned a bachelor's degree from the University of California, Berkeley, and a master’s degree in Public Policy from the Kennedy School of Government at Harvard University. He has received several professional awards recognizing his outstanding performance at OMB and EPRI; including being a past recipient of a Presidential Management Internship (PMIP) and EPRI’s Chauncey Award.

Recent Publications

  • Diamant, A., Young, D., and Wan, Y., 2016. REGEN Scenarios Analysis: Understanding Key Factors That May Impact Future Electricity Generation, EPRI Report 3002005839.
  • Diamant, A., Young, D., Holmes C., Pabi, S., and Bistline, J., 2016. Quantifying Greenhouse Gas Emissions Reductions Associated with Large-Scale End-Use Energy Efficiency Projects, EPRI Report 3002005589.
  • Kahrl, F., Ryan, N. and Diamant, A, 2015. Integrating Distributed Energy Resources into Electricity Resource Planning: Current Practices and Emerging Issues. EPRI Report 3002005838.

Delavane Diaz

Principal Project Manager

Dr. Delavane Diaz is a Principal Technical Leader in the Energy Systems and Climate Analysis Group at the Electric Power Research Institute (EPRI) where her research focuses on the implications of climate and energy policy on the electric sector, resiliency and risk management strategies, and the social cost of carbon.

She returned to EPRI from pursuing her doctorate at Stanford University, where she worked as a research assistant for the Energy Modeling Forum. Her dissertation examined the representation of climate impacts, adaptation, and mitigation technology costs in integrated assessment models, with a focus on coastal vulnerability and sea level rise. Before joining EPRI, she served as an Air Force acquisitions officer, working on a space surveillance radar program at Hanscom AFB in Massachusetts.

Dr. Diaz is a graduate of the U.S. Air Force Academy with a Bachelor of Science degree in Astronautical Engineering and earned a Master of Science degree in Environmental Change and Management at the University of Oxford as a Rhodes Scholar.

Recent Publications

Laura Fischer

Technical Leader

Laura Fischer is a Technical Leader Leader at the Electric Power Research Institute (EPRI). At EPRI, Ms. Fischer leads research on climate impacts and resiliency in the context of the electric power sector. She is the lead for Physical Climate Data and Guidance in EPRI's Climate Resilience and Adaptation Initiative (READi) and serves as an Author for the Adaptation chapter and Technical Contributor for the Energy chapter of the Fifth National Climate Assessment. She manages EPRI's Exploring Climate Impacts in Utility Operations and Planning Interest Group, a multi-company collaborative forum for sharing leading practices on identifying and assessing physical climate risk to the power sector.

Ms. Fischer holds a Master of Science with Distinction in Environmental Change and Management from the University of Oxford and a Bachelor of Arts in Government from Georgetown University. Her dissertation at Oxford explored the relevance of extreme weather event attribution to long-term planning for disaster risk reduction.

Recent Publications

  • Fischer, L., and Young, D. 2019. National Implications of Utility CO2 Targets. EPRI Report 3002017293.
  • Electrification Scenarios for New York's Energy Future. 2020. EPRI Report 3002017940.
  • Fischer, L., and Diamant, A. 2020. Case Studies of 10 Integrated Energy Network Planning Challenges – Volume 2. EPRI Report 3002017669.
  • Fischer, L., and Diaz, D. 2018. Technical Assessment of Resiliency Metrics and Analytical Frameworks. EPRI Report 3002014571.
  • West Fischer, L. 2019. At water's edge: Motivations for floodplain occupation. In Flood Risk Management: Global Case Studies of Governance, Policy and Communities. London: Routledge.

Todd Gorgian

Engineer/Scientist III

Todd Gorgian is an Engineer/Scientist III in the Energy Systems and Climate Analysis Group at the Electric Power Research Institute (EPRI). At EPRI, Mr. Gorgian supports research on the cost and performance of energy systems to support electric company resource planning and strategic decision making.

Mr. Gorgian's current research includes evaluating and applying endogenous learning curves and assessing technology supply chain risks to better understand future costs of current and emerging energy technologies. Prior to joining the Energy Systems and Climate Analysis Group in a full-time capacity, Mr. Gorgian led research on metrics and tools to benchmark electric company sustainability performance, electric sector sustainability and decarbonization goals, and next-generation sustainability metrics for strategic decision making in EPRI's Strategic Sustainability Science program.

Prior to joining EPRI as a Student Employee in 2018, Mr. Gorgian was an intern at Sustainable Capital Advisors, where he performed research on state energy policy and conducted analysis to support the implementation of community solar and renewable energy projects across the United States. Mr. Gorgian holds a Bachelor of Science in Environmental Science and Policy, with a concentration in environmental economics, as well as a Master of Professional Studies in Applied Economics from the University of Maryland College Park.

Recent Publications

  • Assessment of Supply-Side Capital Costs as a Function of Future Capacity Scenarios: Endogenous Learning for Renewable and Gas Technologies. EPRI, Palo Alto, CA: 2021. 3002021213.
  • Gas Turbine Market Insights. EPRI, Palo Alto, CA: 2021. 3002023164.
  • Endogenous Learning for Projecting Future Capital Costs – Evaluation and Implications for Electric Power Generation Technologies. EPRI, Palo Alto, CA: 2020. 3002019786.
  • Next Generation Sustainability Metrics: Establishing a Foundation for Understanding and Measuring Impact. EPRI, Palo Alto, CA: 2020. 3002019245.
  • Evaluating the Potential Impact of Higher Construction Craft Labor Costs on the Capital Costs of New Electric Power Generating Units: A Technology Assessment Guide Associated Program Study. EPRI, Palo Alto, CA: 2019. 3002013752.

Naga Srujana Goteti

Technical Leader

Dr. Naga Srujana Goteti is a Technical Leader in the Energy Systems and Climate Analysis Group at the Electric Power Research Institute (EPRI). Her research areas are building algorithmic solutions and policy simulation tools using primary/secondary data analyses, linear/nonlinear optimization, econometrics, and engineering principles in the energy and power system's world. She currently works on long-term resource planning, electricity system policies, and cost & performance of various energy systems. Before joining EPRI, Dr. Goteti pursued postdoctoral research at MIT Energy Initiative. During this time, she focused on the techno-economic assessment of macro energy systems and capacity expansion modeling for the utilities. Also, she has experience working in various positions in energy consulting, national laboratory, oil and gas, and IT industries in the US, Thailand, and India.

She holds a Bachelor of Engineering in Electrical and Electronics from Jawaharlal Nehru Technological University, Masters in Energy from Asian Institute of Technology, and a doctorate in Sustainability Studies from Rochester Institute of Technology, NY./p>

Recent Publications

  • Naga Srujana Goteti, Eric Hittinger, Brian Sergi, Inês Lima Azevedo (2021). "How does new energy storage affect the operation and revenue of existing generation?",Applied Energy (285).
  • Kasseris, Emmanuel, Naga Srujana Goteti, Sapna Kumari, Bentley Clinton, Seiji Engelkemier, Sarah Torkamani, Tevita Akau, and Emre Gençer (2020). "Highlighting and Overcoming Data Barriers: Creating Open Data for Retrospective Analysis of US Electric Power Systems by Consolidating Publicly Available Sources." Environmental Research Communications (2).
  • Goteti, Naga Srujana, Eric Hittinger, and Eric Williams (2019). "How Much Wind and Solar Are Needed to Realize Emissions Benefits from Storage?" Energy Systems (10:437-449).
  • Goteti, Naga Srujana (2019). "Adding Renewables to the Grid: Effects of Storage and Stochastic Forecasting." RIT PhD thesis.

Romey James

Engineer/Scientist III

Romey James is an Engineer/Scientist III in the Energy Systems and Climate Analysis Group at the Electric Power Research Institute (EPRI). At EPRI, Mr. James supports techno-economic analyses of advanced nuclear, low-carbon resources, and traditional generation and storage technologies.

Before joining EPRI, Mr. James worked as a Revenue and Pricing Analyst at the New York Power Authority where he was responsible for calculating customer rate impacts from generation and transmission assets. Prior to NYPA, Mr. James worked at Duke Energy where he developed methods for forecasting solar in-service dates from interconnection queues, hourly solar and battery profiles for resource planning, and electric vehicle and rooftop solar adoption rates.

Romey holds a BS in Chemical Engineering from the University of Cincinnati and a MBA with a focus in Quantitative Methods for Business from the University of North Carolina at Charlotte

Nils Johnson

Principal Technical Leader

Dr. Nils Johnson is a Principal Technical Leader in the Energy Systems and Climate Analysis Group at the Electric Power Research Institute (EPRI). He applies expertise in techno-economic analysis, operations research, and geographic information systems (GIS) to identify insights and strategies for long-term energy system transitions. His current research areas include assessing the roles of emerging technologies, such as renewables, energy storage, and carbon capture and sequestration (CCS), understanding the implications of state and federal policies for energy transitions, and exploring opportunities for demand-side management (DSM). He also leads ongoing modeling efforts in several countries in Asia.

Before joining EPRI, he worked in the Energy Program at the International Institute for Applied Systems Analysis (IIASA) in Austria. At IIASA, Dr. Johnson examined the implications of delayed climate policy for energy transitions, renewable energy integration challenges, and integrated strategies for managing water, energy, and land resources.

He holds a Bachelor of Arts in Political Science from Haverford College, a Master of Environmental Management and a Master of Forestry from Duke University, and a doctorate in Transportation Technology and Policy from the University of California at Davis, specializing in energy systems analysis.

Recent Publications

  • Sanchez, D.L., N. Johnson, S. McCoy, P.A. Turner, and K.J. Mach. 2018. Near-term Deployment of Carbon Capture and Sequestration from Biorefineries in the United States. Proceedings of the National Academy of Sciences (PNAS), 201719695.
  • McPherson, M., N. Johnson, and M. Strubegger. 2018. The Role of Electricity Storage and Hydrogen Technologies in Enabling Global Low-carbon Energy Transitions. Applied Energy, 216: 649-661.
  • Johnson N., M. Strubegger, M. McPherson, S.C. Parkinson, V. Krey, and P. Sullivan. 2017. A Reduced-form Approach for Representing the Impacts of Wind and Solar PV Deployment on the Structure and Operation of the Electricity System. Energy Economics, 64: 651-664.
  • Kyle, P., N. Johnson, E. Davies, D.L. Bijl, I. Mouratiadou, M. Bevione, L. Drouet, S. Fujimori, Y. Liu, and M. Hejazi. 2016. Setting the System Boundaries of "Energy for Water" for Integrated Modeling. Environmental Science and Technology, 50(17): 8930-8931.
  • Johnson, N., V. Krey, D. McCollum, S. Rao, K. Riahi, and J. Rogelj. 2015. Stranded on a Low-carbon Planet: Implications of Climate Policy for the Phase-out of Coal-based Power Plants. Technological Forecasting and Social Change, 90 (Part A): 89-102.

Daniel Kirk-Davidoff

Senior Technical Leader

Dr. Daniel Kirk-Davidoff is a Senior Technical Leader in the Energy Systems and Climate Analysis Group at the Electric Power Research Institute (EPRI). His research focuses on the impact of anthropogenic climate change on the electric power system, as well as on the particular sensitivities of renewable generation technologies to climate and weather extremes. In addition, he works on improved simulation of renewable generation in planning for future electrical grids.

Before joining EPRI, he worked as faculty member at the University of Maryland, where he developed observational strategies for satellite climate monitoring missions, did climate modeling research on paleoclimate phenomena including the Messinian Desiccation and Eocene polar warmth, and in private industry, where he developed forecasting systems for wind and solar generation combining numerical weather prediction, satellite image processing and machine learning, and led the development of a modernization plan for the Uganda National Meteorological Authority.

Dr. Kirk-Davidoff earned a Bachelor of Science degree in Geology and Geophysics at Yale College, and a doctorate in Meteorology from the Massachusetts Institute of Technology.

Recent Publications

Neil Kern

Principal Technical Leader

Neil Kern is a Principal Technical Leader in the Energy Systems and Climate Analysis Group at the Electric Power Research Institute (EPRI). Mr. Kern manages EPRI's Technology Cost and Performance program which includes the Technology Assessment Guide Web (TAGWeb™) software used widely to conduct technology cost and performance data development for integrated resource planning in the United States and internationally.

Mr. Kern's research focuses on the developing power generation and energy storage cost and performance data for mature, developing, and emerging technologies. This technology research works to align power generation technologies with the utility industry's move toward sustainability and greenhouse gas reductions. The information supports strategic decision making in response to the continuous evolution in generation and storage technology capabilities, market conditions, and environmental policy.

He spent the first ten years of his career at Duke Energy where he served in multiple roles within engineering, regulatory strategy, planning, research and development, and project management. While at Duke Energy, he served on several industry steering committees and advisory boards. Mr. Kern earned a bachelor's degree from North Carolina State University in Chemical Engineering and a master's degree in Economics from West Virginia University. He also is a registered Professional Engineer.

Recent Publications

  • Cost of Cycling Phase II: A Technology Assessment Guide Associated Program Study. EPRI, Palo Alto, CA: 2019. 3002016563.
  • Evaluating the Potential Impact of Higher Construction Craft Labor Costs on the Capital Costs of New Electric Power Generating Units: A Technology Assessment Guide Associated Program Study. EPRI, Palo Alto, CA: 2019. 3002013572.
  • Combine Cycle Plant Lifecycle Management: Engineering and Economic Considerations for O&M Planning Staff. EPRI, Palo Alto, CA: 2019. 3002017532.

Jonathan Lala

Engineer/Scientist II

Dr. Jonathan Lala is an Engineer/Scientist II the Energy Systems and Climate Analysis Group at the Electric Power Research Institute (EPRI). His research focuses on hydroclimatic risks to resource systems across the food-energy-water nexus. At EPRI, Dr. Lala supports research on the resilience of energy systems in the face of climatic variability and change. His dissertation considered the role of subseasonal and seasonal climate forecasts in natural disaster management.

Before joining EPRI, Dr. Lala worked on a range of projects related to climate risk and natural disasters. He served as a consultant for the World Bank on climate-resilience investments for water and hydropower infrastructure in Tanzania, conducted academic research on flood risk in high mountain Asia, and served as a volunteer on resilient infrastructure projects in Peru, India, and Panama.

Dr. Lala received a Bachelor of Science in Civil Engineering and a Master of Science in Environmental and Water Resources Engineering from the University of Texas at Austin, and a PhD in Civil Engineering from the University of Wisconsin-Madison.

Recent Publications

Anahi Molar Cruz

Engineer/Scientist III

Anahi Molar Cruz is an Engineer/Scientist III in the Energy Systems and Climate Analysis group at the Electric Power Research Institute (EPRI). Before joining EPRI, Anahi worked as a research associate at the Chair of Renewable and Sustainable Energy Systems of the Technical University of Munich (TUM) on a wide range of energy-related projects including the integrated modeling of energy systems, the design of decarbonization pathways for the electric and heat sectors at diverse spatial scales, and the techno-economic optimization of geothermal energy utilization.

Anahi holds a BS in Mechanical Engineering from ITESM (Mexico) and a MS in Power Engineering from TUM (Germany) where she is a PhD candidate.

Recent Publications

  • A Molar-Cruz et al. (2022). Techno-economic optimization of large-scale deep geothermal district heating systems with long-distance heat transport. Energy Conversion and Management, 267:115906
  • A Molar-Cruz, S Huezo Rodríguez, T Hamacher (2022): Characterizing the Energy Burden of Urban Households in Mexico: The Impact of Socioeconomic and Temperature Conditions Across Metropolitan Areas. Frontiers in Sustainable Cities, 25
  • A Molar-Cruz A, LD Pöhler, T Hamacher, K Diepold (2022): Who settles where? Simulating urban growth and socioeconomic level using cellular automata and random forest regression. Environment and Planning B: Urban Analytics and City Science, 49(6):1697-1714
  • S Giarola, A Molar-Cruz, K Vaillancourt, O Bahn, L Sarmiento, A Hawkes, M Brown (2021): The role of energy storage in the uptake of renewable energy: A model comparison approach. Energy Policy, 151(1):112159
  • L Sarmiento, A Molar-Cruz, C Avraam, M Brown (2021): Mexico and U.S. power systems under variations in natural gas prices. Energy Policy, 156:112378

Francisco Ralston Fonesca

Engineer/Scientist III

Francisco Ralston Fonseca is an Engineer/Scientist III in the Energy Systems and Climate Analysis group at the Electric Power Research Institute (EPRI).

Before joining EPRI, Francisco worked as a Researcher at the department of Engineering and Public Policy (EPP) at Carnegie Mellon University (CMU), where he focused on modeling and analyzing climate-induced impacts in the power sector. Francisco also worked for seven years as an energy analyst at Power System Research (PSR), a provider of technological solutions and consulting services for the energy sector in Brazil. At PSR, Francisco worked with regulatory and economic-financial analysis of generation assets, and the development of decision-support models used for energy auction bidding and for optimization of renewable energy portfolios in Brazil.

Francisco holds a BS and MS in Electrical Engineering at PUC-Rio (Brazil), a MS in Operations Research at Columbia University, and a PhD in Engineering and Public Policy at CMU.

Recent Publications

  • Ralston Fonseca F, Craig M, Jaramillo P, Bergés M, Severnini E, Loew A, Zhai H, Cheng Y, Nijssen B, Voisin N, Yearsley J. Effects of Climate Change on Capacity Expansion Decisions of an Electricity Generation Fleet in the Southeast U.S. Environ Sci Technol. 2021 Feb 16;55(4):2522-2531. doi: 10.1021/acs.est.0c06547.
  • Ralston Fonseca, F., Jaramillo, P., Bergés, M. et al. Seasonal effects of climate change on intra-day electricity demand patterns. Climatic Change 154, 435–451 (2019).

Chris Roney

Engineer/Scientist III

Chris Roney is an Engineer/Scientist III in the Energy Systems and Climate Analysis Group at the Electric Power Research Institute (EPRI). At EPRI, his current research includes integrated modeling of economy-wide policy and end-use electrification dynamics, electric sector decarbonization, and bioenergy technology pathways for emissions reduction. He specializes in evaluating U.S. and Canadian decarbonization challenges and opportunities. Prior to joining EPRI, he was a Research Associate at the Pacific Northwest National Laboratory's Joint Global Change Research Institute, where he researched the effects of deep decarbonization policies, evaluated the evolution of the transport system under electrification scenarios, and analyzed global climate impacts on the food system.

Mr. Roney holds a Master of Science with Distinction in Environmental Change and Management from the University of Oxford and a Bachelor of Arts in Philosophy from Swarthmore College. For his dissertation at Oxford, he created a dynamic, recursive integrated climate-economy model to evaluate the ethical assumptions used in analysis of global mitigation targets and the social cost of carbon and was awarded Best Dissertation.

Recent Publications

Steven Rose

Technical Executive

Dr. Rose is a Senior Research Economist and Technical Executive in the Energy Systems and Climate Analysis Research Group. His research focuses on long-term modeling of socioeconomic system transitions, climate change drivers and management, and potential climate risks.

Steve’s research has explored topics such as climate-related risk assessment, strategy, and goal setting, the estimation and use of the social cost of carbon and other greenhouse gases, climate change impacts, risks, responses, and resilience, long-run climate management strategy and policy design, mitigation institutions, investment risks and incentives, and the role of natural climate solutions, land use, and bioenergy in climate management.

Steve was a member of the National Academy of Sciences’ Committee on Updating the Social Cost of Carbon, the Task Force for Climate-related Financial Disclosures (TCFD) Advisory Group, and was a lead author on climate impacts, economic damages, and climate scenarios for the IPCC’s Sixth Assessment Report. Steve was also a lead author for the U.S. National Climate Assessment, a member of the U.S. Carbon Cycle Science Program Carbon Cycle Scientific Steering Group, and an expert panelist on U.S. EPA’s Science Advisory Board panel on Carbon Dioxide Emissions from Biogenic Sources. Steve also sits on the Integrated Assessment Modeling Consortium’s Scientific Steering Group and is a member of the Scientific Working Group on Scenarios for Climate-related Financial Analysis.

Steve has a PhD in economics from Cornell University, and an undergraduate degree in economics with mathematical emphasis from the University of Wisconsin-Madison.

Recent Publications

  • Rose et al, 2022. Estimating Global Economic Impacts from Climate Change. In Climate Change 2022: Climate Impacts, Adaptation, and Vulnerability. Sixth Assessment Report of the IPCC, Chapter 16.
  • Guivarch et al, 2022. Economic benefits from avoided climate impacts along long-term mitigation pathways. In Climate Change 2022: Mitigation of Climate Change. Sixth Assessment Report of the IPCC, Chapter 3.
  • Schipper et al, 2022. Climate Resilient Development Pathways. In Climate Change 2022: Climate Impacts, Adaptation, and Vulnerability. Sixth Assessment Report of the IPCC, Chapter 18.
  • Rose et al, 2022. Global biomass supply modeling for long-run management of the climate system. Climatic Change, in press.
  • Rose and Young, 2021. Repairing the Social Cost of Carbon: Immediate Steps for Scientifically Reliable Estimates and Use. EPRI, Palo Alto, CA: 2021. 3002020523.
  • Hytowitz et al, 2021. What does carbon pricing mean for electricity markets? EPRI, Palo Alto, CA. #3002021815.
  • Fischer et al, 2021. Library of potential types of climate-related impacts and response options for the electric power system. EPRI, Palo Alto, CA. #3002023261.
  • Rose, S, D Diaz, 2021. IPCC’S 2021 Climate Science Assessment Report: High-Level Technical Summary and Perspectives. EPRI, Palo Alto, CA. #3002023094.
  • Diaz et al, 2021. Extreme Weather and Climate Resilience: Insights on future weather extremes for company planning and resource adequacy. EPRI, Palo Alto, CA. #3002022590.
  • Rose, 2020. The Value of Carbon Dioxide Removal: Opportunities for Global Climate Management, the Electric Sector, and Companies. EPRI, Palo Alto, CA: 2020. #3002016604.
  • Rose et al, 2020. An overview of the Energy Modeling Forum 33rd study: Assessing large-scale global bioenergy deployment for managing climate change. Climatic Change 163, 1539–1551.
  • Rose and Scott, 2020. Review of 1.5˚C and Other Newer Global Emissions Scenarios: Insights for Company and Financial Climate Low-Carbon Transition Risk Assessment and Greenhouse Gas Goal Setting. EPRI, Palo Alto, CA. 3002018053.
  • Rose and Scott, 2018. Grounding Decisions: A Scientific Foundation for Companies Considering Global Climate Scenarios and Greenhouse Gas Goals. EPRI, Palo Alto, CA. 3002014510.
  • Bistline and Rose, 2018. Social Cost of Carbon Pricing of Power Sector CO2: Accounting for Leakage and Other Social Implications from Subnational Policies, Environmental Research Letters 13 014027.
  • Huppmann et al, 2018. IAMC 1.5°C Scenario Explorer and Data hosted by IIASA. Integrated Assessment Modeling Consortium & International Institute for Applied Systems Analysis.
  • Cropper et al, 2017. Valuing Climate Damages: Updating Estimation of the Social Cost of Carbon Dioxide. National Academies of Sciences, Engineering, and Medicine, Committee on Assessing Approaches to Updating the Social Cost of Carbon. Washington, DC: National Academies Press.
  • Rose et al, 2017. The Paris Agreement and Next Steps in Limiting Global Warming. Climatic Change 142(1), 255-270.
  • Rose et al, 2017. Understanding the Social Cost of Carbon: A Model Diagnostic and Inter-Comparison Study, Climate Change Economics 8 (2).

Nidhi R. Santen

Principal Technical Leader

Dr. Nidhi R. Santen is a Principal Technical Leader in the Energy Systems and Climate Analysis Group at the Electric Power Research Institute (EPRI). She manages Program 178 on Resource Planning for Electric Power Systems and Project Set 178B on Integrated Energy Planning. Her primary research areas include long-term electricity sector resource planning, risk analysis and investment decision-making under uncertainty, and environmental and technology policy analysis.

Before joining EPRI, Dr. Santen worked at the MIT Energy Initiative on low-carbon electricity infrastructure planning, electricity market design, and hybrid modeling of economy-wide and electric power systems modeling tools. She also worked as a research fellow and project manager with the Energy Technology Innovation Policy research group at the Harvard Kennedy School of Government, where she improved how uncertainty and technological change are represented within long-term energy planning models. For over a decade prior to that, Dr. Santen worked on electricity planning and environmental issues across industry, consulting, and non-governmental research organizations including CPS Energy, Synapse Energy Economics, and the National Academy of Sciences.

Nidhi holds a Ph.D. in Engineering Systems from MIT, an M.S. and M.P.A. in Atmospheric Science and Environmental Policy from Indiana University-Bloomington, and a B.A. from the University of Illinois at Urbana-Champaign.

Recent Publications

  • Analyzing Federal Clean Energy Standards: Policy Design Choices and Future Electric Power Sector Outcomes. EPRI, Palo Alto, CA: 2021. EPRI Technical Brief. 3002020121.
  • Cost-Effectively Achieving Carbon Goals in Minnesota: Renewable Standards vs. Technology-Neutral Policies—A scenario-based analysis of electric-sector impacts through 2050. EPRI, Palo Alto, CA: 2019. EPRI Technical Brief. 3002015420
  • Santen, N.R., Webster, M.D., Popp, D., and Perez-Arriaga, I., 2017. "Inter-temporal R&D and capital investment portfolios for the electricity industry's low carbon future." The Energy Journal Vol. 38(5).
  • Santen, N.R. and Diaz Anadon, L., 2016. "Balancing solar PV deployment and RD&D: A comprehensive framework for managing innovation uncertainty in electricity technology investment planning." Renewable and Sustainable Energy Reviews 60: 560-569.

Heidi Scarth

Engineer/Scientist I

Heidi Scarth is an Engineer/Scientist I at the Electric Power Research Institute (EPRI). She is a member of the Energy Systems and Climate Analysis team, where she works primarily on policy analysis, the social cost of carbon and other greenhouse gases, and state-level electrification analyses. In addition, Ms. Scarth works with EPRI's Technical Innovation sector, where she identifies and analyzes emerging technological trends, and co-leads the Value of Resilience Interest Group.

Ms. Scarth holds dual Bachelor of Arts degrees in Government and Economics, and a certificate in International Relations from Wesleyan University.

Recent Publications

Ridwan Siddique

Engineer/Scientist III

Dr. Ridwan Siddique is an Engineer/Scientist III in the Energy Systems and Climate Analysis Group at the Electric Power Research Institute (EPRI). His main research areas are regional and global scale hydroclimatic modeling, analysis and prediction of extreme events, uncertainty quantification and climate risk assessment. Dr. Siddique's current research activities examine weather and climate impacts on renewable energy and electric power sector to facilitate climate resiliency and adaptation planning.

Before joining EPRI, he worked for the U.S. National Center for Atmospheric Research (NCAR) and USGS Northeast Climate Adaptation Science Center (NECASC). His dissertation was focused on improving short- to medium-range weather and flood forecasts and quantifying their associated uncertainties. He also has experiences working with different federal, state and private organizations like NOAA, NASA, Massachusetts State Office of Energy and Environment, MassDOT, and Idaho Power on climate analysis and research collaborations.

Dr. Siddique received his PhD from the Pennsylvania State University in Civil Engineering with a major in Hydrology and Water Resources and minor in Computational Science. He earned his MS from University of Texas at Arlington and BS from Bangladesh University of Engineering and Technology.

Recent Publications

Erik Smith

Engineer/Scientist II

Erik Smith is an Engineer/Scientist II in the Energy Systems and Climate Analysis Group at the Electric Power Research Institute (EPRI).

At EPRI, Dr. Smith supports research on climate impacts and resiliency of the electric power sector. His research examines how climate change will alter weather extremes in order to pinpoint future vulnerabilities and mitigate impacts. His dissertation used climate model output from the Coupled Model Intercomparison Project Phase 6 (CMIP6) to determine how Cold Air Outbreaks (CAOs) might change in the coming decades. He has also worked with research groups from NASA and the National Oceanic and Atmospheric Administration (NOAA) to create a timeseries model of Great Lakes Water Clarity, develop extreme event climate change indicators relating to human thermal comfort, and assess predictability of anomalous coastal sea-levels from atmospheric patterns.

Dr. Smith is received his PhD in Geography from Kent State University, where he also received an MA in Geography, and has a BS in Meteorology from Western Kentucky University.

Recent Publications

  • Smith, Erik, and Sheridan, S. C. (2020). "Where do Cold Air Outbreaks occur and how have they changed?" Geophysical Research Letters: doi.org/10.1029/2020GL086983.
  • Sheridan, S. C., Lee, C. C., & Smith, E. T. (2020). "A comparison between station observations and reanalysis data in the identification of extreme temperature events." Geophysical Research Letters: doi.org/10.1002/essoar.10502708.1.
  • Smith, Erik, Lee, C. C., Pirhalla, D., Ransibrahmanakul, V. Chuanmin, H., Barnes, B. B., & Sheridan, S. C. (2019). "A synoptic climatological analysis of the atmospheric drivers of water clarity variability in the Great Lakes." Journal of Applied Meteorology and Climatology: doi.org/10.1175/JAMC-D-19-0156.1.
  • Smith, Erik, and Sheridan, S. C. (2019). "The Influence of Extreme Cold Events on Mortality in the United States." Science of the Total Environment: doi.org/10.1016/j.scitotenv.2018.07.466.

Andrea Staid

Senior Technical Leader

Andrea Staid is a Senior Technical Leader in the Energy Systems and Climate Analysis Group at the Electric Power Research Institute (EPRI). Her research focuses on risk and resilience analysis for energy infrastructure planning and operational decision-making. Through this, Andrea works to integrate multisource data into system models to best represent real-world complexities and impacts from extreme events.

Prior to joining EPRI, Andrea worked for Sandia National Laboratories in the Center for Computing Research, with projects covering topics on natural hazard impact modeling for interdependent infrastructure systems, scenario creation to capture renewable energy production uncertainties, and coupling climate risk with infrastructure vulnerabilities. She also worked to advance data analytic methods and implementation across a range of national security applications.

Andrea received her MS and PhD degrees in Environmental Systems Engineering from Johns Hopkins University and her BS in Aerospace Engineering from MIT.

Recent Publications

Silas Swanson

Engineer/Scientist I

Silas Swanson is an Engineer/Scientist I in the Energy Systems and Climate Analysis Group at EPRI. He provides support throughout the group's research activities and works with EPRI's Technology Innovation sector to produce strategic insights on near-term technology trends.

Prior to EPRI, Silas was a Research Assistant at the Center on Global Energy Policy's (CGEP) energy modelling team where he analyzed data on electricity demand and technology baselines and was trained in VEDA-TIMES. He also worked at the National Renewable Energy Laboratory (NREL) in the Grid Modernization initiative, the Columbia Electrochemical Energy Center, and in ICF's energy markets practice.

Silas holds a B.S. in Earth and Environmental Engineering and a B.A. in Philosophy from Columbia University.

Karen Tapia-Ahumada

Senior Technical Leader

Dr. Karen Tapia-Ahumada is a Senior Technical Leader in the Energy Systems and Climate Analysis Group at the Electric Power Research Institute (EPRI).

Before joining EPRI, Dr. Tapia-Ahumada worked as a Research Scientist at the MIT Energy Initiative on a wide range of energy-related projects with a focus on the economic and regulatory modeling and analysis of energy systems, distributed energy resources and end-use technologies, renewable energy generation, and the techno-economic assessment of integrated energy systems. She worked on topics such as the impact of distributed energy resources and the role of rate design in their deployment, and the evolution of electric power systems under deep decarbonization goals.

Karen holds a Ph.D. in Engineering Systems and a M.S. in Technology and Policy both from MIT. Before that, she received her B.S. and a M.S. in Industrial Electrical Engineering from the Pontifical Catholic University of Chile.

Recent Publications

Thomas F. Wilson

Principal Technical Executive

Dr. Thomas Wilson is a Principal Technical Executive in Strategic Analysis, Safety, and Sustainability at the Electric Power Research Institute (EPRI). His research activities focus on a variety of climate-related issues: costs of alternative policies and the role of technology R&D in potentially reducing these costs, exploring mechanisms for allowing flexibility in domestic and international climate policies and their interactions with regulatory approaches, and providing information and methods to help electric utilities make decisions in the face of climate policy uncertainty.

Dr. Wilson joined EPRI in as a Project Manager in the Risk Analysis program in the Environment Sector, where his activities focused on risk management for a variety of environmental issues (e.g., global climate change, acidic deposition, electromagnetic fields, air toxics, and non-combustion wastes), and decision support methodologies (e.g., technology choice, siting, and making decisions involving multiple objectives and multiple stakeholders).

Before joining EPRI, Dr. Wilson worked at ICF Incorporated, Stanford's Energy Modeling Forum and International Energy Program, and Brookhaven National Laboratory. He earned a bachelor's degree in Statistics from the University of North Carolina, Chapel Hill and master's and doctoral degrees in Operations Research from Stanford University.

Recent Publications

  • Rose, S.K. D. Turner, G. Blanford, J. Bistline, F. de la Chesnaye, and T. Wilson, 2014. Understanding the Social Cost of Carbon: A Technical Assessment. EPRI Report 3002004657.
  • Hibbard, K., Wilson, T. Averyt, K. Harriss, R., Newmark, R., Rose, S., Shevliakova, E., Tidwell, V., 2014: Ch. 10: Energy, Water, and Land Use. Climate Change Impacts in the United States: The Third National Climate Assessment, J. M. Melillo, Terese Richmond, and G. W. Yohe, Eds., U.S. Global Change Research Program.
  • Contributing Author, 2014. Drivers, Trends and Mitigation (Chapter 5), Climate Change 2014: Mitigation of Climate Change. Fifth Assessment Report, Mitigation Working Group (Working Group III), Intergovernmental Panel on Climate Change.

David Young

Program Manager

Dr. David Young is a Program Manager and the Area Manager for the Energy Systems and Climate Analysis Group at the Electric Power Research Institute (EPRI). Dr. Young manages the Energy, Environmental, and Climate Policy Analysis program, which helps energy companies assess the impacts of climate policy on business and compliance strategies, understand the benefits and risks of new technologies, and assess the impacts of environmental policies at state and regional levels. Dr. Young also supports EPRI's US-REGEN energy-economy model.

Before joining EPRI, Dr. Young was a research fellow at the University of Auckland Business School Energy Centre. His work there focused on designing and programing an agent-based simulation model of the New Zealand wholesale electricity market to understand market behavioral changes in response to the increasing use of intermittent generation.

Dr. Young earned a Bachelor of Science degree in Economics and Mathematics from the University of Canterbury and Master of Science and doctoral degrees in Social Science/Economics from the California Institute of Technology.

Recent Publications

Qianru Zhu

Engineer/Scientist II
Qianru Zhu

Dr. Qianru Zhu is an Engineer/Scientist II in the Energy Systems and Climate Analysis Group at the Electric Power Research Institute (EPRI).

At EPRI, Dr. Zhu supports research on integrated planning and capacity expansion modeling. In her dissertation, she analyzed climate change mitigation and adaptation strategies at diverse scales by applying optimization, risk analysis, and techno-economic modeling frameworks. She collaborated with an interdisciplinary team to integrate political-organizational and techno-economic considerations to analyze decarbonization pathways for the U.S. She also collaborated with researchers from Lawrence Berkeley National Laboratory (LBNL) to conduct case studies of the economic impacts of power interruptions to electricity system infrastructure from extreme events.

Before joining EPRI, Dr. Zhu completed her PhD in Operations Research and Industrial Engineering at the University of Texas at Austin, where she was also a Trainee of INFEWS (Innovation at the Nexus of Food-Energy-Water Systems) NSF Research Traineeship Program. She earned a BS in Mathematics and a BS in Economics from Penn State.

Recent Publications