

Trends in Stochastic Modeling for Integrated Resource Planning

ENERGY DELIVERY AND CUSTOMER SOLUTIONS

Rachel Moglen, Ph.D. Research Scientist, EPRI, Energy Systems & Climate Analysis Group

October 2024

in X f www.epri.com © 2024 Electric Power Research Institute, Inc. All rights reserved.

Introduction

Background

Resource plans look decades into the future. Stochastic analysis helps resource planners evaluate the risks posed by the uncertainty inherent in IRP.

Objective

Offer practical insights, guidance and examples for how resource planners can characterize, evaluate, and manage risk using stochastic planning.

Value

This project identifies trends in stochastic planning practices. It also offers practical guidance for using stochastics in IRP. An **Excel workbook with illustrative examples** for developing stochastic parameters from data is provided in an attachment to the project report.

Project in collaboration with DTE Energy

Download at: https://www.epri.com/research/products/00000003002030746

Project Contact:

Rachel Moglen rmoglen@epri.com

Final report is free and publicly available on EPRI.com

Definitions: Deterministic and Stochastic Planning

Deterministic Planning: Decision making that assumes all inputs and conditions are known with certainty, producing a **single predictable** outcome.

Stochastic Planning: Decision making that accounts for uncertainty by considering a range of possible futures and their associated probability of occurring.

Stochastic planning quantifies economic and other risks posed by a range of possible futures

Probability

Deterministic

assumed future

planning provides a

snapshot for a single

Deterministic Planning Results

Uncertainty Modeling in IRP

	Scenario Analysis	Sensitivity Analysis	RA Analysis	Stochastic Planning	Adaptive Planning
Uncertainty Focus	Scenario Uncertainty	Parameter Uncertainty	Reliability	Risk	Robustness
Models Event Occurrence Probability?	X	X	\checkmark	\checkmark	\checkmark
Common Methods	Scenario Analysis	Sensitivity Analysis	Monte Carlo Analysis	Monte Carlo Analysis, Probability Trees	Stochastic Optimization
Use Frequency	Common	Common	Common	Fairly Common	Rare

Uncertainty Modeling in IRP

	Scenario Analysis	Sensitivity Analysis	RA Analysis	Stochastic Planning	Adaptive Planning
Uncertainty Focus	Scenario Uncertainty	Parameter Uncertainty	Reliability	Risk	Robustness
Models Event Occurrence Probability?	X	X	\checkmark	\checkmark	\checkmark
Common Methods	Scenario Analysis	Sensitivity Analysis	Monte Carlo Analysis	Monte Carlo Analysis, Probability Trees	Stochastic Optimization
Use Frequency	Common	Common	Common	Fairly Common	Rare

Resource Adequacy Analysis: Resource portfolios are evaluated (e.g., in an hourly dispatch model) for **how well they meet system needs (e.g., LOLE)** under a wide variety of alternate futures.

Stochastic Planning: Resource portfolios are evaluated (e.g., in an hourly dispatch model) for **how well they perform (e.g., total system costs)** in a wide variety of alternate futures.

21 IRPs and long-term company plans reviewed for this report

Scope of Stochastic Planning Review

21 IRPs / long-term planning documents reviewed for:

- 1. Stochastic planning methodology
- 2. Key drivers of uncertainty
- 3. Stochastic sample generation methods
- 4. Interpreting and communicating stochastic results

1. Stochastic Planning Methodology

- Almost all companies employ a Monte Carlo analysis for their stochastic risk analysis
 - Exceptions: NWPCC, AES Indiana (2019), Ameren _ Missouri
- Most (>50%) IRPs use 100-500 iterations in their Monte Carlo analysis
- A variety of commercial tools are used for stochastic modeling including Aurora, PLEXOS, MIDAS, Crystal Ball, EnCompass, and PowerSIMM

2. Key Drivers of Uncertainty

Geographic region matters when selecting drivers of uncertainty

3. Stochastic Sample Generation Methods

Mean Reversion and Autocorrelation

Adapted from Figure H.1: Stochastic Process, PacifiCorp 2023 IRP, Volume II, Appendix H, Pg 167 Mean-Reversion: after a shock, a process that tends to return to its average value over time.

Autocorrelation: the correlation of a time series with a lagged version of itself. This captures the degree of similarity between consecutive observations of a random variable.

These behaviors can be captured using an **Auto-Regressive Model:** a model that predicts the value of a future variable as a linear function of that variable's past values.

66% of companies modeled autocorrelations in their stochastic inputs

3. Stochastic Sample Generation Methods

Overview

Stochastic Input	Auto-Regressive Model	Correlated with Other Inputs	Typical Distributions	Intra- Annual	Inter- Annual
Load	\checkmark	\checkmark	Normal or Lognormal	\checkmark	\checkmark
Electricity Prices	\checkmark	\checkmark	Lognormal	\checkmark	\checkmark
Natural Gas Prices	\checkmark	\checkmark	Lognormal	\checkmark	\checkmark
Coal Prices	\checkmark	\checkmark	Lognormal	\checkmark	\checkmark
Fuel Oil Prices	\checkmark	\checkmark	Lognormal	\checkmark	\checkmark
Hydro-electric Generation	\checkmark	\checkmark	Uniform, Lognormal, or Non-parametric	\checkmark	
Forced Outages			Bernoulli	\checkmark	
Carbon Prices			Discrete		\checkmark
Technology Capital Costs			Discrete		\checkmark
Solar Generation		\checkmark	Non-parametric	\checkmark	
Wind Generation		\checkmark	Non-parametric	\checkmark	

Uncertainty

EPGI

4. Interpreting Stochastic Results

Visualization

Boxplots visualize the range of stochastic outcomes for each portfolio and provide visual insight into their relative risks.

Adapted from Figure 9-72, AES Indiana 2022 IRP, Volume I, Pg 248

Risk Metrics

Risk metrics can be used in the portfolio scorecard

The Stochastic Planning Process

2. Data Collection

Gather historical observations or

simulations of stochastic inputs.

The following outlines the process for using stochastic planning in portfolio risk evaluation via Monte Carlo methods.

1. Variable Selection

Identify the key stochastic inputs impacting your system.

Generate Monte Carlo samples and run the Production Cost Model for each of the samples.

4. Portfolio Risk Evaluation

02

3. Parameter Fitting

Determine the best distribution to describe each stochastic input and fit the parameters of each of the stochastic processes.

5. Result Interpretation

Analyze the results of the stochastic modeling using the risk metrics and visualizations. Use this analysis to guide the selection of a preferred portfolio.

04

03

05

Uncertainty Modeling in IRP

As systems evolve with new technologies, policies, and market dynamics, how can planners account for deep uncertainties in integrated resource planning today for a robust portfolio?

	Scenario Analysis	Sensitivity Analysis	RA Analysis	Stochastic Planning	Adaptive Planning
Uncertainty Focus	Scenario Uncertainty	Parameter Uncertainty	Reliability	Risk	Robustness
Models Event Occurrence Probability?	X	X	\checkmark	\checkmark	\checkmark
Common Methods	Scenario Analysis	Sensitivity Analysis	Monte Carlo Analysis	Monte Carlo Analysis, Probability Trees	Stochastic Optimization
Use Frequency	Common	Common	Common	Fairly Common	Rare

TOGETHER...SHAPING THE FUTURE OF ENERGY®

in X f www.epri.com

© 2024 Electric Power Research Institute, Inc. All rights reserved