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Overview of This Presentation

• Problem Framing

• A Simple Example

• Critical Assumptions: Timing, Risk, and Constraints

• Overview of Scenario Reduction Methods

• Discussion
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Framing the Problem

So, you want to use scenarios…

➢ What is your question?

1. What are different futures that could occur?

2. How can I compare the risks between Plan A and Plan B?

3. What is a plan that, on average, is least cost?

4. What is a plan that protects me from the “worst case”?

5. Are there strategic near-term opportunities to hedge against 
uncertainty?
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Framing the Problem

Each question requires:

➢A different set of scenarios

➢A different analysis/solution method
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Illustrative Example: ERCOT
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• Based on ERCOT

• 2018 existing generation mix

• Omit zonal/transmission constraints

• 15-year planning horizon

• Focus on two periods: 2030 and 2040

• Candidate Technologies

• Natural Gas Combined Cycle

• Natural Gas Combustion Turbine

• Nuclear

• Solar

• Wind 

Lee et al. (2022). iScience. 25. 103723.



Problem Formulation
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• Constraint:

• Meet a cumulative CO2 emissions limit

• Uncertainties (only in 2040)

• Natural gas price

• Load growth

• Emissions limit quantity

• Cost factor for nuclear capital costs

• “Full” Uncertainty: 50 Scenarios

• Minimize expected total costs

• Meet emissions constraint in all scenarios

• Allow violations with fixed penalty
Lee et al. (2022). iScience. 25. 103723.



Three Conceptual Scenarios
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Scenario Set for Illustrative Example
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50 Scenarios: Randomly Sampled (Sobol sampling)



Monte Carlo Simulation: 50 Optimal Investment Plans
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Stage 1 Investments Stage 2 Investments

Each plan is optimal for one scenario; assumes “perfect information”

Median

50% 

Range
90% 

Range

20% of 

cases

34% of 

cases



Analysis Frameworks

1. Scenario Analysis (Three scenarios)

• Three investment plans

2. Monte Carlo Simulation (50 scenarios)

• 50 investment plans

3. Two-Stage Stochastic

• 2030 investments common across scenarios
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Optimal Investment Plan: Stage 1 (2030)
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Optimal Investment Plan: Stage 1 (2030)

Reference Scenario (A) Plan
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Optimal Investment Plan: Stage 1 (2030)

Average Plan across 

all scenarios
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Optimal Investment Plan: Stage 1 (2030)

Option-value to investing in less CCGT in first stage; can build more later if needed

Stage 1 Plan 

Stochastic Model
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Before Selecting Scenarios: Setting up the Problem

• Problem Formulation

• What is the question the analysis should address?

• Temporal structure

• When will information be updated? When can decisions be made?

• Treatment of Constraints

• Hard constraint? Penalty for violation? Uncertainty?

• Treatment of risk

• Risk measures in objective function

• Risk measures in constraints

• Alternative formulations for cost / constraint tradeoffs
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Managing Uncertainty: Question Types

• How do I compare performance of alternative investment plans?

• Simulate candidate plans under many future scenarios

• Construct risk profile (e.g., distributions of cost, reliability) for each plan

➢Monte Carlo Simulation

• How do I find a plan that does well on average?

➢Stochastic Optimization – minimize expected costs

• How do I prepare for the worst-case?

➢Robust Optimization

• What if I am risk-averse, but RO is too extreme?

➢Stochastic Optimization with Contingent Value at Risk (CVaR)

➢Stochastic Optimization with Chance Constraints

➢Other hybrid approaches
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Treatment of Risk

• Risk measures in objective function
• Distribution of total cost across scenarios

• Risk measures in constraints
• Distribution of violations across scenarios

• Depends on which constraints
• Meet demand

• Capacity reserve margin

• Emissions targets

• Alternative formulations for cost / constraint tradeoffs
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•Given the cost from every scenario, 
what do you want to minimize?

•Expected Costs

Treatment of Risk in Objective Function
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•Given the cost from every scenario, 
what do you want to minimize?

•Expected Costs

•Minimize cost of worst scenario

Treatment of Risk in Objective Function
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Highest Cost

Scenario



•Given the cost from every scenario, 
what do you want to minimize?

•Expected Costs

•Minimize cost of worst scenario

•Minimize a percentile of the cost 
distribution (VaR)

Treatment of Risk in Objective Function
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•Given the cost from every scenario, 
what do you want to minimize?

•Expected Costs

•Minimize cost of worst scenario

•Target a percentile of the cost 
distribution: 

•Contingent Value at Risk (CVaR)

Treatment of Risk in Objective Function
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Average Loss

Above $100M



Dimensionality Reduction: The Full Problem

Find minimum average cost investment plan considering:

• All possible long-term future scenarios (infinite)

• All planning periods (annual for 20 years)
• Recourse decisions every period

• All hours of each year for operations (8760)

• Many samples of forced outages for each hour/year/scenario

• All candidate units for addition or retirement

• Fully detailed operations model with all constraints (UC/OPF)
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We cannot solve the full problem -> too large!



Dimensionality Reduction / Model Tractability

• Reduce the number of elements in one or more of :

• Number of future scenarios of long-term uncertain parameters

• Number of operational hours per planning period

• Number of planning periods 

• Number/resolution of candidate resources

• Simplify operations model 

• Fewer constraints

• Aggregate resolution (time, spatial)

• Use decomposition scheme to solve large problem efficiently

• Can include more scenarios / hours
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How can I solve GEP under uncertainty in a reasonable amount of time?
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Dimensionality Reduction: The Goal

•Goal: 
• Solution to the Approximate Problem 

• Should be “close to” the solution of the “Full Problem”

➢Which result do you want to approximate?

• The optimal total cost?

• The Stage 1 investment plan?

• The risk of not meeting a constraint?
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Long-Term Scenario Selection

• Create very large scenario set, and down-select

• Repeated sampling subsets from full set

• Forward selection: Add scenarios until some objective is met

• Backward selection: Remove scenarios until some objective is met

• Clustering-based reduction methods

• Cluster based on similar inputs (e.g., similar load/wind/solar patterns)

• Probability distance methods

• Select a subset that approximates the same outcome (e.g., expected cost)

• Decision covariance methods

• Cluster scenarios to maximize variance across candidate decisions

• Importance Sampling

• Ensure sufficient samples to represent the “tail”
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• Within any planning year, need operations cost for candidate plans

• Within-year variability in load, wind, solar, forced outages, etc.

• Using 8760 hours may be prohibitive

• How to select a subset of hours, and how to weight them?

• Traditional approach: select representative hours (LDC)

• Because of expected increase in renewable generation, energy storage

• Requires chronological sequences of hours

• Select some number of segments (days, weeks) of chronological hours 

of operating conditions, with an associated weight

Short-Term Uncertainty (Operational Hours)
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Assume the goal is to select representative days (24 hours) or weeks (168)

1. Random Sampling

• Select a subset of days or weeks

2. Clustering

• Solve all days for one or more plans (get operation cost)

• Cluster/select subset of days to approximate the operation cost

• Various clustering methods: similar to those used for long-term scenarios

3. Chronological Time Period Clustering

• Solve all days for one or more plans (to obtain operation cost)

• Merge consecutive time periods that are “similar”

• Same idea as Network Reduction methods for OPF.

➢Should long-term and short-term clustering be independent?

Short-Term Uncertainty: Methods
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• Planning under uncertainty encompasses many questions

• Each analysis requires a different scenario set

• Critical assumptions to think about:

• The timing of information and decisions

• The relevant constraints and their representation

• The appropriate degree of risk aversion and its representation

• Scenario reduction methods (long-term)

• Select the subset that approximates your objective in the analysis

• Representative hours selection (short-term)

• Best selection varies across long-term scenarios

Summary
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Thank you

Contact:  Mort Webster
  mdw18@psu.edu
  Professor of Energy Engineering
  Dept. of Energy and Mineral Engineering
  Pennsylvania State University



Extra: Example of Cost Risk
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ERCOT Example: Stage 1 Build
• Scenarios / Monte Carlo:

• Plan is optimal only in that 
scenario

• Does not consider risk

• Stochastic Solution

• Considered all scenarios

• Lowest average cost across 
scenarios

• There is still a distribution of 
costs over the scenarios

• How do the plans differ in terms 
of the entire risk distribution?
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Risk-Averse Objective Function

• What if you care more about the higher cost scenarios?

• Traditionally, focus on the Value-at-Risk (VaR)
• This is just the 1 − 𝛼 percentile out of the cumulative distribution

• E.g., minimize the 90th percentile cost

• Contingent Value-at-Risk
• Expected value for all scenarios above the target percentile

• E.g., minimize average losses greater than X
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ERCOT Example: CVaR in Objective Function

• Tested several different target levels:

• 60%

• 70%

• 80%

• 90%

Increasing

Degrees of 

Risk-Aversion

Expected Total Cost

Risk-Averse Solutions Have Higher Average Costs
36



ERCOT Example: Impact of Risk Aversion on Investments
Stage 1 Investments

Greater Risk-Aversion: Additional Investments for “worst” scenarios
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ERCOT Example: Impact of CVaR on Distribution of Costs

90% Solution: 

Lowest Cost in 

High-Cost Scenarios

38



ERCOT Example: Impact of CVaR on Distribution of Costs

90% Case: 

Highest Cost in 

Most Scenarios

60/70% Cases: 

Perform Better in all 

except highest-cost 

scenarios
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Extra: Long-Term Scenario Clustering Methods
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Clustering for Long-Term Scenario Reduction

• Too many scenarios to include all

• Find the subset of scenarios that approximate the “true” solution

• Want to include

• At least one scenario that needs a different solution

• Do not include multiple scenarios that need the same solution

• Example:

• Assume the 50 scenarios is the “full set” of uncertainty

• Assume you can only include 4 scenarios in the stochastic model
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1) Clustering on Input Uncertainties
• Apply K-means clustering to the full 

sample set

• Group into 4 clusters

• Identify the “medoid” scenario 

• Minimizes the distance within each 
group from medoid

• Maximizes the distance between 
medoids across groups

• “Weight” of each medoid: how many 
scenarios in its cluster

Cluster 1

Cluster 3

Cluster 2

Cluster 4
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2) Clustering on Outcomes
• Problem: Clustering by inputs may not 

map directly to cost impacts

• Distance-weighted or probability-weighted 
methods

• Cluster by Total Cost across scenarios

• Can consider multiple outcomes

• e.g., Cost and emissions

• Clusters by relative impact on cost

• The reduced set will provide a better 
approximation of total cost from the full 
uncertainty set

Cluster 1

Cluster 3

Cluster 2

Cluster 4

NOTE: 

Different partitions 

 the methods
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3) Clustering on Decisions

• Problem: Some high-cost scenarios 
might not be addressed by the 
decisions

• Distance-weighted approximates the 
cost only in the reference case

• Selected scenarios might not 
distinguish between investments

• Decision-based clustering

• Identify groups that favor a different 
investment plan

• Include one scenario from each group

Cluster 1

Cluster 3

Cluster 2

Cluster 4

NOTE: Does not partition the 

input space into distinct regions
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Clustering Methods: Impact on Cost, Risk, and Decisions

Stage 1 Investments Distribution of Cost

Clustering by Decision: 

Better Manages 

High-Cost Outcomes

Clustering by Inputs: 

Higher Cost in

Worst scenarios
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Tradeoffs in Choosing a Clustering Method

• Computation time tradeoffs:
• Cluster by Inputs: 

• No additional model runs needed for setup

• Cluster by Cost: 

• Need solution from deterministic model for all scenarios, base system

• Cluster by Decision:

• Need solution from deterministic model for all scenarios, sample plans

• Given enough scenarios (clusters), any method works well
• More clusters = more computation time for stochastic model
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