Supply Chain Considerations for Clean Energy Project Development

Robin Bedilion Principal Project Manager, EPRI

178 Seminar on Resource Planning for Electric Power Systems

November 2, 2023

Image: marked bit www.epri.com
Image: marked bit with the second bit with th

Motivation: Rapid Expected Deployment of Clean Energy Technologies

Average Rate to 2030

EPSI

Projected pace of deployment of clean energy technologies that could enable 2030 U.S. decarbonization goals based on EPRI's *Impact of Inflationary Drivers and Updated Policies on U.S. Decarbonization and Technology Transitions* (3002026229), Historical values through 2021 based on Form EIA-860 data

What are the supply chain risks and research opportunities to achieve accelerated deployment?

Supply Chain Risks

Critical Material Availability

Manufacturing Capabilities

Geopolitical, Environmental, and Social Risks

Transportation and Logistics

EPR

Critical Mineral Availability: A Shift in Energy System Needs

Source: IEA (2021), The Role of Critical Minerals in Clean Energy Transitions, World Energy Outlook Special Report. All rights reserved.

"Shift from a Fuel-intensive to a Material-intensive Energy System"

Critical Mineral Availability: Projected Mineral Demand

Demand for key minerals, especially those currently used for lithium ion batteries, is expected to increase significantly between now and 2050

EPCI

Critical Mineral Availability: Concentration of Supply Production and Refining

% of Production Located in Top 3 Producing Countries

% of Refining Capacity Located in Top 3 Refining Countries

Nearly 70% of cobalt production is in DRC and 60% of REE production is in China; China accounts for over 60% of cobalt refining and 85% of REE refining capacity

Manufacturing Capabilities: Solar PV

Historic oversupply of global annual PV module manufacturing capacity, production capacity concentrated in China

Manufacturing Capabilities: Wind

Global wind equipment production capacity exceeds demand, but supply-demand margins could continue to narrow, especially as seen with disruptions to manufacturing and shipping during the pandemic

Source: Wood Mackenzie (April 2020), Coronavirus Impact to Wind Energy Supply Chain

Manufacturing Capabilities: Lithium Ion Batteries

Global battery manufacturing capacity expected to double between 2020 and 2022 and increase fourfold by 2030

Availability of batteries from "Tier 1" manufacturers viewed as a challenge

Competition between EVs and stationary storage

Source: Wood Mackenzie (2021), Global Energy Storage Outlook H2 2021

Geopolitical, Environmental, and Social Considerations

Trade Tariffs and Import Restrictions Human Rights, Labor Issues, and Health and Safety Environmental Impacts of Materials Extraction and Manufacturing

Transportation and Logistics

Challenges transporting materials and equipment from source to interim and final destinations

Increased shipping costs

Increased time from procurement to commercial operations and project delays

EPRI

Opportunities to Improve and Strengthen Supply Chain Resiliency

Insights from EPRI's Recent White Paper

Understanding Generation and Storage Technology Supply Chain Risks and Needs to Support Electric Utility Sector Decarbonization

3002023228

Together...Shaping the Future of Energy®

Robin Bedilion Principal Project Manager Tel: 509.714.1766 Email: <u>rbedilion@epri.com</u>