

Long Lasting Nickel-Hydrogen Batteries For Grid Flexibility

EPRI Workshop – Washington D.C. Nov 2023

Chad Spring Associate Director, Business Development

+1 (720) 819-5711 chad.spring@enervenue.com

©2020-2023 EnerVenue, All rights reserved. Confidential and proprietary

Augment Your Expectations, Not Your Battery

AGENDA

- HISTORY
- CONTRAST AND COMPARE
- ENERGY STORAGE VESSEL
- DEPLOYMENT AND USE CASES
- **PROJECT EXECUTION TIMELINE**
- TOTAL COST OF OWNERSHIP

Technology Timeline

Mature, proven technology used in outer space applications for 30+ years

NASA

Metal-Hydrogen deployed by NASA

- Mars Rover
- Space Station
- Hubble Telescope
- **30+ years**
- 200 million cycles
- 100,000 charge and discharge cycles

980s

Stanford University

Stanford Professor Yi Cui refines NASA battery technology

- New materials
- Reduced costs

VIE

New catalyst

EnerVenue spun-out of Stanford's business accelerator

- 30,000 cycles
- 30 years
- 3 cycles per day
- No fire risk
- 100% recyclable

2020

Energy Storage Vessel™ production underway

- Commercialized solution
- Pilot line in Fremont, CA
- Gigafactory facility operational in 2025

Coming Soon to Shelby County, Kentucky

- 1 Million square feet
- EnerVenue will achieve volume production in 2025 in Kentucky-based facility, with eventual expansion to 20 GWh
- Vessels meet the stringent requirements to be classified as Made in the USA
- Energy Storage Vessels should qualify for ITC/IRA domestic content incentives, but please consult with a qualified tax advisor to determine your project's eligibility

Traditional Energy Storage Challenges

Traditional energy storage technologies have a role to play in meeting the demands of the energy transition but are limited in their applicability by cost and safety concerns

Most Durable and Reliable Battery Technology

Ni-H2 batteries can operate in extreme temperatures for 30+ years, offering the longest cycle-life of any battery system

No augmentation		
No routine maintenance	Flexible charge/discharge range C/2 to C/12	30+ year lifespan ~30,000 cycles, 3 cycles/day 🔶
Harsh climates: hot deserts & freezing winters	للا Flammable liquids and toxic materials	High chemistry, adoption ^{Li-ion} and technology risks
Technology capable of -40°C to 50°C ambient 🔶	Non-toxic, no lithium, easily sourced	Proven in 30+ years of use in space applications 🔶
2	Li-ion larsh climates: hot deserts & freezing winters Technology capable of	Iarsh climates: hot deserts & freezing winters Flammable liquids and toxic materials Technology capable of Non-toxic, no lithium, easily

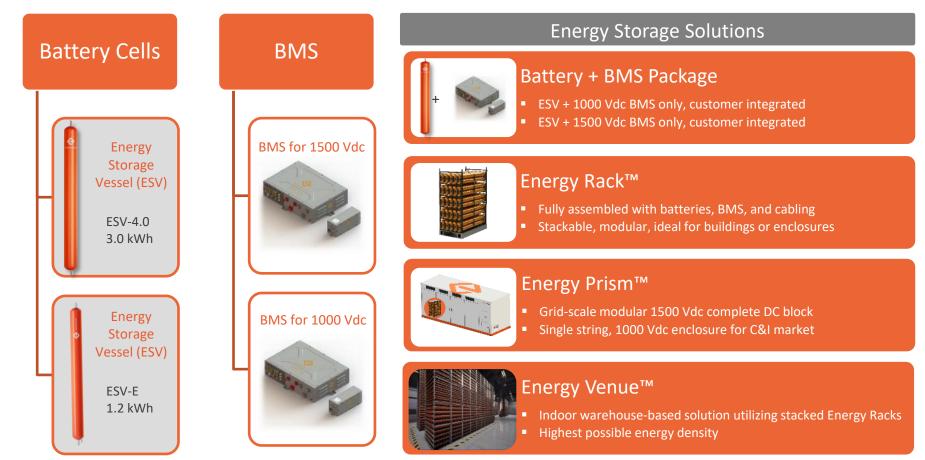
EnerVenue Energy Storage Vessel

30+ years mature technology upgraded with new low-cost earth abundant durable catalyst and design improvements 6 CATHODE ANODE NIOOH H2 ā Ni(OH)2 H₂O CATHODE COMPACT SEPARATOR NEW Ni(OH)2 CATALYST SEPARATOR

Our Markets

Traditional energy storage technologies have a role to play in meeting the demands of the energy transition but are limited in their applicability by cost and safety concerns

Grid-scale



Commercial & Industrial

Residential

Battery

		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	ТҮРЕ	DESCRIPTION	SPECIFICATION
y Cells	Mechanical	Dimensions (Diameter x Length)	168mm x 1800mm
		Format	Tubular
		Туре	Large Format Battery
		Weight	62 Kg / 136 lbs
		Operating Temperature	-10C to 45C
Energy		Storage Temperature	-15 to 60 C
Storage essel (ESV)		Cooling Type (Pending)	Convection, Forced Air
ESSEL (ESV)	Electrical	Nominal Amp-hour Charge/Discharge	137 Ah
		Nominal Energy Capacity	3.0 kWh @ 25 ℃
ESV-4.0 3.0 kWh		Voltage Range	23-30 Vdc across full range of SOC (0-100%) @ 25 °C
		Nominal Power	1500 W
		C-Rates	C/2 - C/12
		Peak RTE	>90% @ 25 °C
		Expected Capacity Retention	86% after 30,000 cycles
		Chemistry	Ni-H2
		Modes	Constant Current, Constant Power
		BMS	EnerVenue BMS 1000 V / 1500 V
	Performance	Warranty	3-years standard, extendable to 20 years
	Regulatory	Certifications Pending	UL1973* and applicable CE standards
		Tests Pending	UL 9540A
		Product Name	ESV-4

Model: Energy Storage Vessel ESV-4.0 PRELIMINARY

¢

Energy Storage Solutions

Model: Energy Rack

PRELIMINARY

ТҮРЕ	DESCRIPTION	SPECIFICATION
Mechanical	Dimensions	8' H x 3.5' W x 7' D
	Weight	7,500 lbs.
	Operating Temperature	-10 to 45 C
	Cooling Type	Forced Air
	Chemistry	Nickel Hydrogen (NiH2)
Electrical	1500 Vdc String Capacity	150 kWh
	1000 Vdc String Capacity	102 kWh
	1500 DC System Voltage	1150 - 1500 Vdc
	1000 DC System Voltage	782 - 1000 Vdc
	Max DC Current	67 A
	C-rates	C/2 to C/10
	Aux Load (Max)	1000 Watts
	Expected Capacity Retention	86% after 30,000 cycles
	BMS	Included, EnerVenue BMS 1000 V / 1500 V
Performance	Warranty	3-years standard, extendable to 20 years
Regulatory	Certification (Pending)	UL 1973, 9540, 9540A, UL 1998
Software	Communication Protocol	Modbus TCP/IP

Energy Rack[™]

- Fully assembled with batteries, BMS, and cabling
- Stackable, modular, ideal for buildings or enclosures

Grid-Scale

EnerVenue NiH₂ is changing the way electric utilities are thinking about battery energy storage systems

ENERVENUE DELIVERS MORE

- 30-year life, 3 cycle/day
- Multiple cycles per day with total flexibility
- Short and long duration operation
- No augmentation needed over entire life
- Minimal OPEX and LOW warranty costs
- Proven safe with zero fire risk

Energy Storage Solutions

Model: Energy Prism 1500 Vdc

PRELIMINARY

ТҮРЕ	DESCRIPTION	SPECIFICATION
Mechanical	Dimensions	10' H x 25' W x 7' D
	Operating Temperature	-10 to 45 C
	Cooling Type	Forced Air
	Chemistry	Nickel Hydrogen (NiH₂)
Electrical	Usable Capacity	900 KWh
	1500 DC System Voltage	1150 - 1500 Vdc
	C-rates	C/2 to C/10
	Expected Capacity Retention	86% after 30,000 cycles
	BMS	C/2 to C/10 86% after 30,000 cycles Included
Performance	Warranty	3-years standard, extendable to 20 years
Regulatory	Certification (Pending)	UL 1973, 9540, 9540A, UL 1998
Software	Communication protocol	Modbus TCP/IP

Energy Prism[™]

- Grid-scale modular 1500 Vdc complete DC block
- Single string, 1000 Vdc enclosure for C&I market

Grid-Scale

Energy Racks can be stacked in new-build or existing structures

San had Black it:

NU.

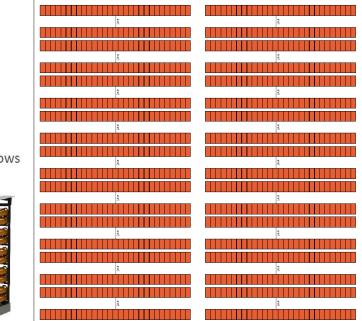
Water a to the and the ball the instance of the same

NU/

. .

Grid-Scale

Building or using existing warehousing allows for a customized design


Energy Storage Solutions

Structure Specifications

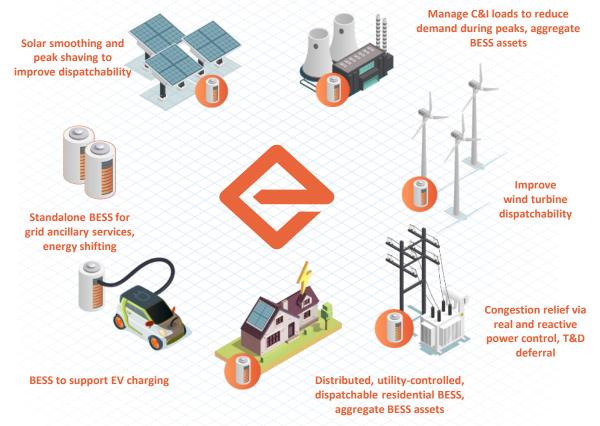
- 50,000 ft² structure
- 150 kWh per 1500V rack
- 29 racks per row
- 1,044 racks per level
- 3,132 racks total
- 8' recommended clearance between rows
- 1' recommended clearance for back-to-back rows

Total Capacity

- 1-level total = 156.6 MWh
- 2-level total = 313.2 MWh
- 3-level total = 469.8 MWh

Energy Venue™

- Indoor warehousebased solution utilizing stacked Energy Racks
- Highest possible energy density



Excellent scalability with stacking up to three rows high

Dimensions 24' H x 21' W x 7' D

Grid-Scale Applications

EnerVenue NiH₂ is changing the way electric utilities are thinking about battery energy storage systems

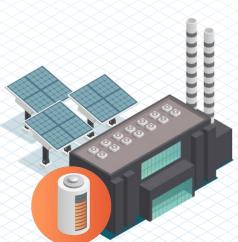
DURABLE 30,000 cycles, 30 years, 3 cycles/day FLEXIBLE Multiple use cases per day SIMPLE Minimal OPEX with no augmentation SAFE No fire or thermal runaway risk PROVEN Refined by NASA and Stanford

ENERVENUE CAN DO IT ALL...

	LITHIUM-ION	ENERVENUE
Dailu	1	1-3
Daily	With Resting	Continual
Cycles	Period	Cycling
OPEX (% CAPEX/yr)	3 %	0.5 %
Augmentation	Yes	No

©2020-2023 EnerVenue, All rights reserved. Confidential and proprietary.

The Value of Battery Energy Storage


Commercial and Industrial (C&I) customers

REDUCE COSTS

- Shift electricity consumption from expensive to lower cost periods
 - Generates power locally
- Reduces demand on the grid without disrupting business operations

IMPROVE RESILIENCY

- Provides enough backup power to tackle any grid reliability issues
- Provides backup coverage by leveraging the solar energy stored
 - Provides plenty of backup power to tackle any grid imbalances

IMPROVE SUSTAINABILITY

- Harness energy from renewable fuel sources
- Draws more electricity from autonomously generated solar power
- Slashes the amount of energy drawn from the grid

EARN REVENUE

- Grants access to grid services, like **Demand Response**
- Minimizes the energy curtailment and generates additional revenue streams
- Generates revenue by selling energy surpluses into the energy market

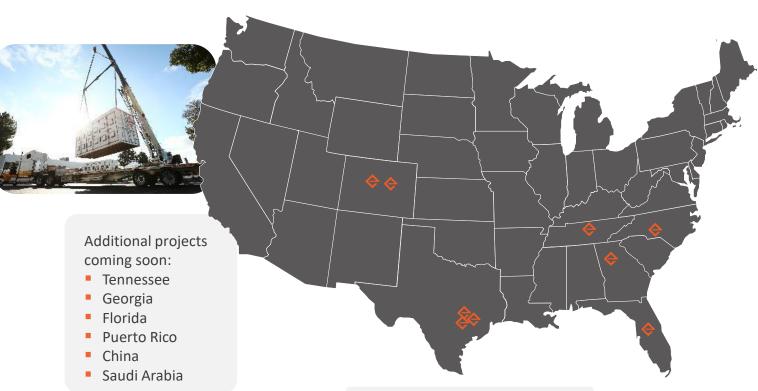
Execution Partners

Established relationships across industry verticals to drive EnerVenue market penetration

EnerVenue Deployments

Arvada, CO 365 kWh

Watkins, CO 365 kWh


Sugar Land, TX 365 kWh

Charlotte, NC 365 kWh

India 365 kWh

Germany 365 kWh

Denmark 365 kWh

1.4+ GWh in firm POs 7,000 MWh in MOUs signed

EXPANSION TIMELINE

2023

HIGH SPEED R&D LINE

ESV 4.0

100 MWh Q4 2024 GLOBAL PRODUCTION VALIDATION SITE

1ST PHASE KENTUCKY GIGAFACTORY

2025

1500 MWh

5000+ MWh

2026 DOMESTIC & GLOBAL EXPANSION

Let's Talk about Risk

All projects involve risk. From high to low, the responsibility is yours.

> So why do most battery suppliers make it difficult to mitigate that risk?

Capacity Assurance[™]

The stationary battery storage industry's simplest and longest extended warranty

LI-ION

- 7 10 years or 7,000 10,000 cycles
- End of life with 60% capacity
- Complex operating terms
 - SOC limitations
 - Narrow C-rate requirements
 - <u>Strict</u> temperature requirement
 - Non-linear degradation
 - Requires augmentation strategy
- 10-year design life (1 cycle per day)
 - No safety margin

ENERVENUE ENERGY STORAGE VESSELS

- The stationary battery storage industry's simplest and longest extended warranty
- 20-year or 20,000 cycles
- Second life with 88% capacity
- Simple operating terms
- 90-year design life (1 cycle per day)
- Ample safety margin

Validation from Distinguished Media Outlets

FORBES > INNOVATION > SUSTAINABILITY

Forget Musk! This News From EnerVenue Will Change The World

Erik Kobayashi-Solomon Contributor © Investor in climate change adaptation and mitigation businesses

Follow

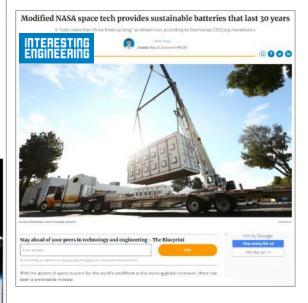
■ 0

May 26, 2023, 08:00am EDT

Listen to article 5 minutes

The International Space Station pictured from the Space Crew Dragon Endewour in November 2021 (UASA)

CANARY MEDIA


This NASA tech might just spur

EnerVenue's still got plenty to prove, but it already has a pipeline of orders and more than \$100M in funding. A factory in Kentucky is on

a major grid battery

breakthrough

the way.

I believe these walls of EnerVenue Energy Storage Vessels represent the future of stationary battery installations around the world. [-] ENERVENUE.COM

EnerVenue Has Garnered International Attention

Energy Storage

Metal-Hydrogen Battery Company EnerVenue Signs 250 MWh Supply Deal with Developer

Solar Power World

EnerVenue Offers 20-Year Extended Warranty for Its Nickel-Hydrogen Batteries

• CANARY MEDIA

This NASA tech might just spur a major grid battery breakthrough

pv magazine

EnerVenue to Supply 420 MWh of Metal-Hydrogen Batteries to Puerto Rico

SOLAR*iii* BUILDER

EnerVenue has a metal-hydrogen battery tech that could de-throne large-scale lithium storage

POWER

Battery Technology Used in Outer Space Could Be a Gamechanger on Earth

Solar Industry

EnerVenue Signs Energy Storage Agreement with Pine Gate Renewables

Forbes

EnerVenue: The Batteries We Need For Grid-Scale Storage

Metal-hydrogen battery company EnerVenue to open 1GWh battery factory in Kentucky, scaling up to 20GWh

Industry Leading Management Team

EnerVenue has brought together a team of premier scientists and renewable energy and battery executives experienced in commercializing breakthrough technologies

Jorg Heinemann CEO

10+ years renewable energy executive leadership; 20 years global business transformation leadership at Accenture

- CCO/COO Primus Power
- EVP SunPower (\$1.5B P&L)
- Accenture, Executive Partner

Yi Cui Chairman & Chief **Technology Advisor**

Professor, Matertials Science & Engineering, Stanford

- Founder of Amprius, 4C Air, and EEnotech
- Fellow of Electrochemical Society (2018), Materials Research Society (2016) and Roval Society of Chemistry (2015)

Majid Keshavarz сто

20+ years renewable and energy storage technology leadership

- CTO of IMERGY
- VP R&D of Natron Energy
- Ph.D., Rensselaer Polytechnic Institute

Betsy Engle CFO

10+ vears Renewable Energy leadership 20+ years of Fortune 500 public company experience

- SVP CFO Iron Mountain Data Centers (4B IRM)
- SVP 8 Minute Energy Solar + Storage
- VP Graftech (1.5B GTI)
- VP General Electric Industrial (12B GE)

Randall Selesky CRO

25+ years of leadership experience from startups as well as Fortune 500 companies.

- SVP Global Sales & Marketing for Greensmith Energy Management
- VP Power & Energy for Rockwell Automation

Kim Gupta CSO

- 25+ years of supply chain and manufacturing expertise including start-ups and Fortune 100
- VP Strategic Sourcing for Bloom Energy
- Supply chain, materials and operations. Intel
- PH.D. Stanford

Industry Leading Sales Management Team

Randall Selesky CRO

25+ years of leadership experience from start-ups as well as Fortune 500 companies

- SVP Global Sales & Marketing for Greensmith Energy Management
- VP Power & Energy for Rockwell Automation

Dave Shultz VP of Sales, Americas

20 years in the technology and energy management space

- VP Sales at KORE Power and Greensmith/Wartsila
- Regional sales director at EnerNOC

Nabil Contreras Director of Sales, Americas

17-year career in the energy industry

- Developed multiple micro-grids in the Caribbean
- Lead Cummins channel development

Chad Spring Associate Director Business Development

15+ years of growing and managing accounts in fossil and renewable energy industries

- Siemens Energy TurboCare, EthosEnergy, and Toshiba America Energy Systems
- SMA America

Christine King Associate Director, Inside Sales

20 years in sales, administration and operation management

- Managed sales operations for Iron Mountain
- Track record of driving demand, increasing speed to close

Veteran Product, Marketing, and Inside Support Team

Spencer Nervig Senior Director, Product Management & Application Engineering

13-year career as a battery storage and power conversion expert

- 13-year career in the energy industry.
- 8 years at SMA focused on BESS
- Customer facing AE assisting clients with all aspects of design.

Tucker Meier Senior Applications Engineer

Extensive experience guiding customers through complex power and storage project challenges

- 15-year career in renewable energy
- Senior applications engineer and technical training specialist, SMA Solar Technology

Brad Dore Senior Director, Marketing

Creative and pragmatic thinker with more than 15 years of experience in renewable energy

- Outside sales and creative agency experience
- Director of Marketing, Americas region, SMA Solar Technology

Matt Marx Product Marketing Manager

Marketing strategist and sales enablement specialist with 15 years experience in renewable energy

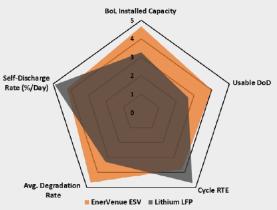
- Senior Marketing Manager, GoodWe
- Strategic Marketing Manager, SMA Solar Technology

PRICING

Aggressive Total Cost of Ownership

©2020-2023 EnerVenue, All rights reserved. Confidential and proprietary.

Storlytics Total Cost of Ownership Study


Use case 1: overbuild, high cycle count, deep discharge

Power Req. at POI25 MWDuration Req.4 hoursEoL Dsch Energy Req. at POI100 MWhProject Life20 YearsCycle Count per Day2.1 Cycles		Simulation Amb. Temp	EnerVenue (ESV)	Lithium (LFP) 24 °C	Technical Scores Scores are based on En specified use-case in se		performance
Cycle Count per Asset Life	15,330 Cycles	Required BoL Energy	112.36 MWh	219.17 MWh	Bo	L Installed Capacity	
Deployment Strategy Applications	Overbuild Energy Arbitrage	Max SoC	100%	96%		4	
Applications	PJM RegD , PV clipped Energy	Min SoC	3%	3%		3	
	Clipped Energy	EnerVenue (ESV	/) Li	-lon (LiFePO₄)	Self-Discharge	2	Usa
Project Life		20 years		20 years	Rate (%/Day)	1	
Cost per unit energy (\$/kWl	h)	350		20 years 285		0	
Required BoL Energy Capaci		112.36		219.17		\	
DC Block Capital Cost(\$)	, ()	\$ 39,326,000		\$62,463,450			
AC System Capital Cost(\$)		\$ 2,400,000		\$3,360,000			/
Total System Capital Cost(\$))	\$ 41,726,000		\$65,823,450	Avg. Degradation		
SoH Guarantee Cost per yea	ar (\$)	\$ 179,776		\$317,797	Rate EnerVe	enue ESV 🔳 Lithium LFF	
NPV Cost of SOH Guarantee	e(\$)	\$ 2,715,387		\$4,800,087	Figure 1. Radar	chart for technical	comparison
Energy Loss Per Year (MWh)	9026.45		2,097.66	, i i i i i i i i i i i i i i i i i i i		
Cost of Energy Loss per Year	r(\$)	\$ 992,910		\$ 230,742	Table	e I. Technical Scorin	ng
NPV Cost of Energy Loss (\$)		\$ 14,771,986		\$ 3,432,859		EnerVenue ESV	Lithium LF
NPV of Total Running Cost(\$	\$)	\$ 17,487,373		\$ 8,232,946	BoL Instl. Capacity	4.7	3.3
Discount rate		3%		3%	Usable DoD Cycle RTE	4 3.8	2.7 4.7
Total Cost (\$)		\$ 59,213,373	ç	\$ 74,056,396	Avg. Deg. Rate	4.7	4.7
Required EoL Energy(MWh)	1	100		100	Self-Dsch Rate (%/Day)	4.2	4.9
Effective Cost per Required	EoL Energy(\$/kWh)	\$ 592		\$ 741			

ESV-4.0 drives lower cost, comparison underway

nce of

	EnerVenue ESV	Lithium LFP
BoL Instl. Capacity	4.7	3.3
Usable DoD	4	2.7
Cycle RTE	3.8	4.7
Avg. Deg. Rate	4.7	3.3
Self-Dsch Rate (%/Day)	4.2	4.9

Storlytics Total Cost of Ownership Study

Use case 2: augmentation, medium cycle count, deep discharge

Power Req. at POI	25 MW		EnerVenue (ESV)	Lithium (LFP)
Duration Req. EoL Dsch Energy Req. at POI	4 hours 100 MWh	Simulation Amb. Temp	20 °C	24 °C
Project Life	20 Years	Required BoL Energy	112.36 MWh	127.48 MWh
Cycle Count per Day Cycle Count per Asset Life Deployment Strategy	1.75 Cycles 12,775 Cycles EnV: Overbuild; Li-	Required Augmentation	None	Y5 – 30 MWh Y12 – 115 MWh Y15 – 30 MWh
Applications	Ion:Augmentation	Max SoC	100%	96%
ESV-E	Energy Arbitrage PV clipped Energy	Min SoC	3%	3%

_		
	EnerVenue (ESV)	Li-Ion (LiFePO₄)
Project Life	20 years	20 years
Cost per unit energy (\$/kWh)	350	285
Required BoL Energy Capacity (MWh)	112.36	127.47
DC Block Capital Cost(\$) - Year 0	\$ 39,326,000	\$36,328,950
DC Block Capital Cost(\$)- Augmentation	\$0	\$30,935,381
DC Block Capital Cost(\$) - Total	\$39,326,000	\$67,264,331
AC System Capital Cost(\$)	\$ 2,400,000	\$2,160,000
Mobilization/Demobilization		\$215,756
Total System Capital Cost(\$)	\$ 41,726,000	\$ 69,640,086
SoH Guarantee Cost per year (\$)	\$ 179,776	\$184,832
NPV Cost of SOH Guarantee(\$)	\$ 2,715,387	\$2,791,747
Energy Loss Per Year (MWh)	7186.49	2,742.25
Cost of Energy Loss per Year(\$)	\$ 790,513	\$ 301,647
NPV Cost of Energy Loss (\$)	\$ 11,760,842	\$ 4,487,745
NPV of Total Running Cost(\$)	\$ 14,476,229	\$ 7,279,492
Discount rate	3%	3%
Total Cost (\$)	\$ 56,202,229	\$ 76,919,578
Required EoL Energy(MWh)	100	100
Effective Cost per Required EoL Energy(\$/kWh)	\$ 562	\$ 769

ESV-4.0 drives lower cost, comparison underway

©2020-2023 EnerVenue, All rights reserved. Confidential and proprietary.

Technical Scores

Scores are based on EnerVenue battery performance of specified use-case in section 3

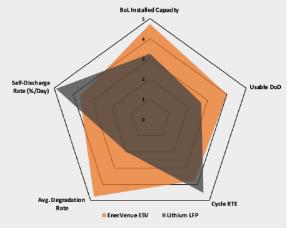


Figure 1. Radar chart for technical comparison

Table I. Technical Scoring

	EnerVenue ESV	Lithium LFP
BoL Instl. Capacity	4.7	3.3
Usable DoD	4.0	2.7
Cycle RTE	3.8	4.5
Avg. Deg. Rate	4.7	2.0
Self-Dsch Rate (%/Day)	3.7	4.9

Disclaimer: This work should not be viewed as an endorsement by EPRI and should be considered an unbiased, independent analysis

DER-VET EnerVenue Modeling Results

Miles Evans | EPRI

У in f www.epri.co

023 Electric Power Research Institute, Inc. All rights reserved.

m

Overview

This study compares the financial outcomes from owning and operating an EnerVenue energy storage system with a typical Lithium-ion energy storage system using EPRI's Distributed Energy Resources Value Estimation Tool (<u>DER-VET</u>). Each system in 2, 4, 6, and 8 hour configurations is simulated in the CAISO and ERCOT energy and ancillary services markets with degradation modeling to determine expected lifetimes and compared on a net present value basis.

Data Sources

- Energy and ancillary services prices in 2022
 - CAISO (PGAE DLAP)
 - ERCOT (HOUSTON HUB)
- Technical specifications and performance information
 - EnerVenue's data sheet and supplementary information from EnerVenue
 - Lithium-ion generic data and EPRI's cost tool

Inputs and Assumptions

Capital Costs Sensitivity Analysis

AC CAPITAL COST SENSITIVITY INPUTS

- EnerVenue and Liion assumed to be the same
 - \$250/kW (low)
 - \$330/kW (base)
 - \$420/kW (high)

Includes

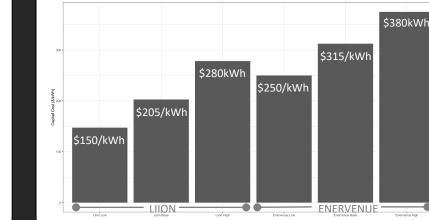
- PCS
- Controls/SCADA
- AC BOP and Installation
- Site Work

- Engineering
- Management
- Contingency
- Profit

EnerVenue

٠

•

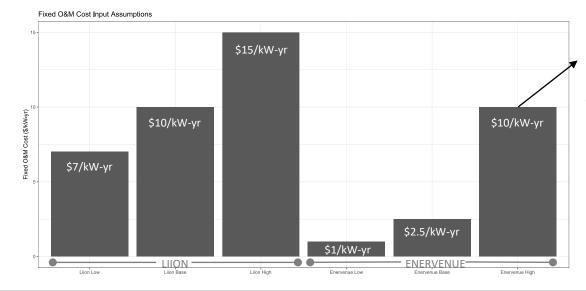

• \$250/kWh (low)

\$315kWh (base)

\$380/kWh (high)

٠

- Liion
 - \$150/kWh (low)
 - \$205/kWh (base)
 - \$280/kWh (high)
- Includes
- Batteries
- DC BOP (enclosure, aux systems, etc)
- BESS Installation



actric Dowar Recearch Institute Inc. All rights reconved

Fixed O&M Costs Sensitivity Analysis

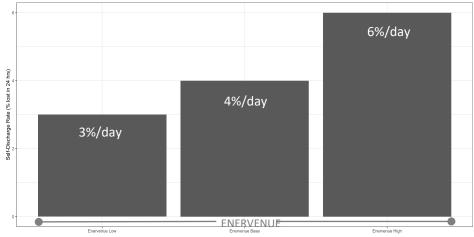
FIXED O&M COST SENSITIVITY INPUTS

- Liion .
 - \$7/kW-yr (low) ٠
 - ٠
 - \$15/kW-yr (high) ٠
- EnerVenue assumed to be the same ٠
 - \$1/kW-yr (low)
- \$10/kW-yr (base) \$2.5/kW-yr (base)
 - \$10/kW-yr (high)

NOTE: The EnerVenue high fixed cost scenario is selected to match the Liion base scenario for comparison's sake. This is not an expectation of high fixed costs for the EnerVenue system.

Self-Discharge Rate Sensitivity Analysis

SELF-DISCHARGE SENSITIVITY INPUTS

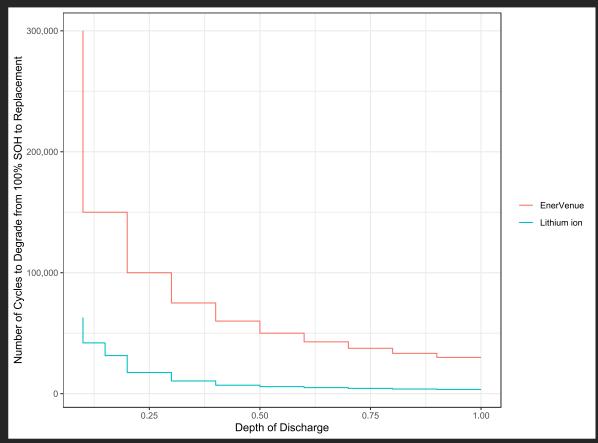

• Liion

• EnerVenue assumed to be the

• 0%/day

- same
 - 3%/day (low)
 - 4%/day (base)
 - 6%/day (high)

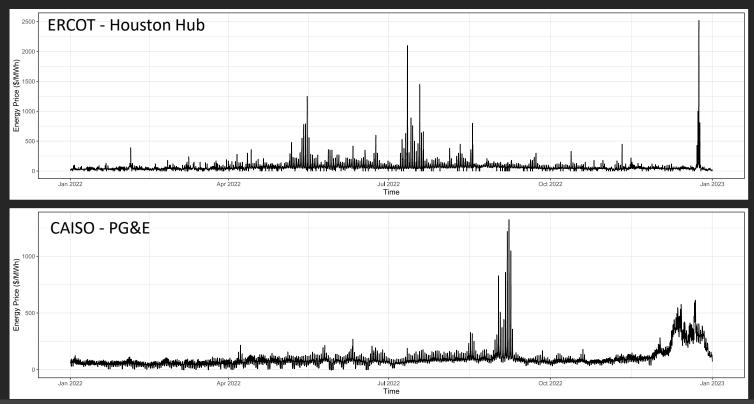
Degradation and RTE Inputs


DEGRADATION INPUTS

- The EnerVenue system is given a very conservative flat cycle life curve, meaning a partial cycle is counted as a full cycle in the DER-VET model
- A generic cycle life curve is used for the Lithium system based on a generic LFP chemistry

RTE INPUTS

- Lithium-ion: 85%
- EnerVenue: 83% (86% DC-DC RTE plus inverter losses)


RTE = AC energy discharged/AC energy charged

Market Participation Comparison

Energy Prices

- Historical ENERGY market pricing data for calendar year 2022
- Used as DER-VET baseline for EnerVenue and Liion NPV comparison

Regulation Prices

- Historical FREQUENCY REGULATION market pricing data for calendar year 2022
- Used as DER-VET baseline for EnerVenue and Liion NPV comparison

Energy Market Comparison – 24hr Snapshot CAISO PG&E

Visual depiction of DER-VET model analysis.

In both cases, the systems charge from the cheapest available electricity and discharge when the price is highest.

NOTE: Only minimal differences in operation due to roundtrip efficiency differences, etc.

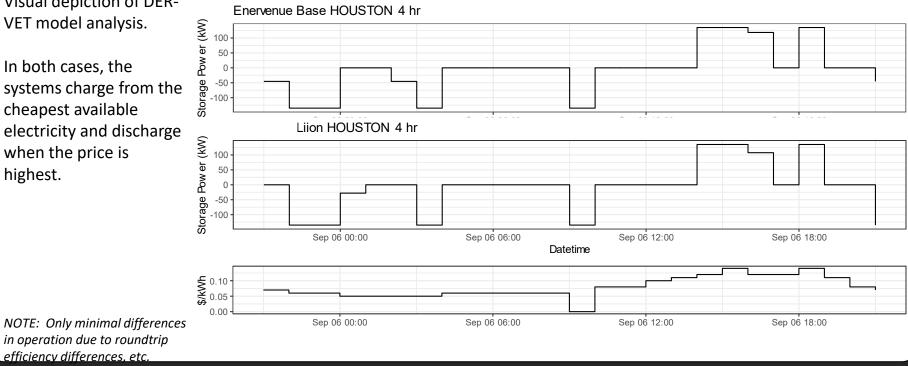
© 2023 Electric Power Research Institute, Inc. All rights reserved.

Energy & Regulation Market Comparison – 24hr Snapshot CAISO PG&E

Visual depiction of DER-VET model analysis.

Blue arrows represent regulation participation.

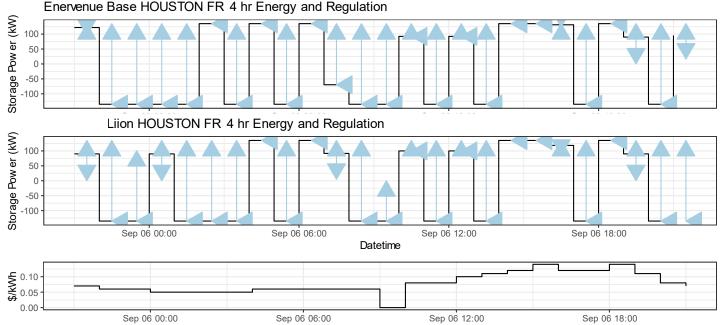
Both systems maximize total (energy and regulation) benefit with similar overall operation.


Both systems discharge fully during the price spike while recharging and providing regulation at other times

Energy Market Comparison – 24hr Snapshot **ERCOT Houston**

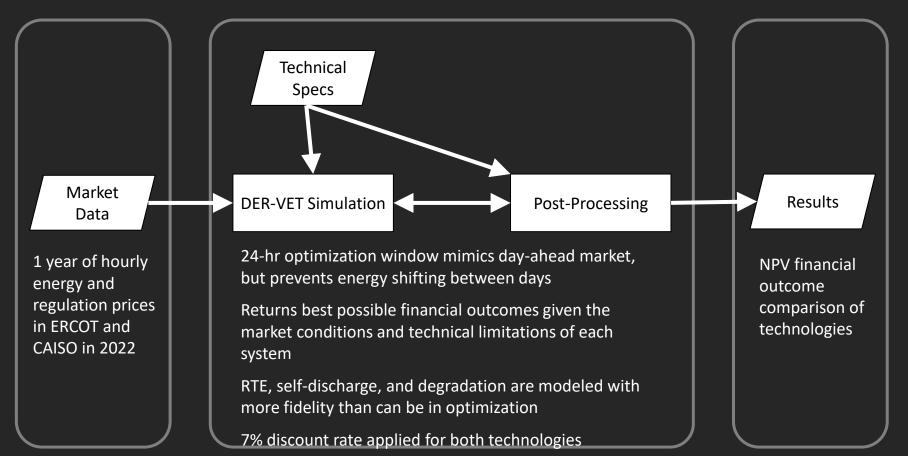
Visual depiction of DER-VET model analysis.

In both cases, the systems charge from the cheapest available electricity and discharge when the price is highest.



Energy & Regulation Market Comparison – 24hr Snapshot ERCOT Houston

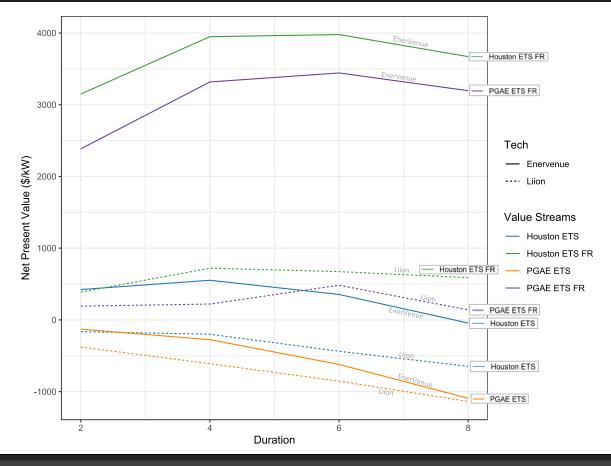
Visual depiction of DER-VET model analysis.


Blue arrows represent regulation participation.

Both systems spend most of the day providing regulation and managing SOC, and discharging with no regulation during the afternoon.

Methods

Methods



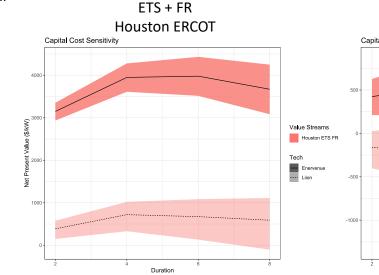
Results

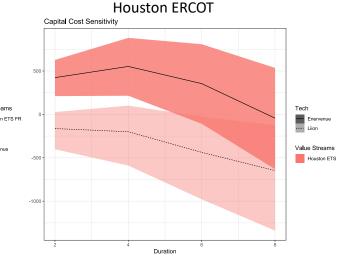
Net Present Value – Base Case

CONCLUSIONS

 NPV of EnerVenue is greater than Liion in all use cases and durations

<u>Key</u> ETS = 'Energy Time Shifting' FR = 'Frequency Regulation'

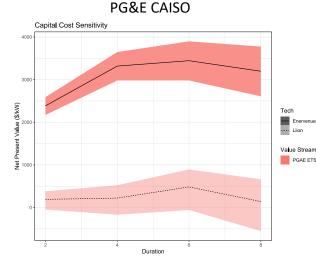

Net Present Value - Capital Cost Sensitivity


CONCLUSIONS

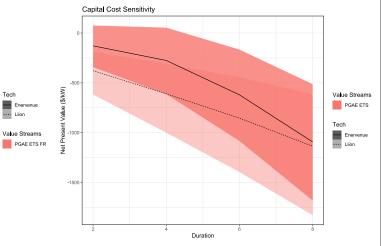
 For ETS+FR case in Houston ERCOT, EnerVenue's high cost assumption yields significantly better NPV than Liion low cost assumption across all durations.

 For ETS case in Houston ERCOT, EnerVenue's high cost assumption yields better NPV than Liion low cost assumption in 2 and 4 hour durations while still being competitive in 6 and 8 hour durations. The colored ribbons represent the range between low and high capital costs and the line represents the base assumption.

ETS


Net Present Value - Capital Cost Sensitivity

CONCLUSIONS


- For ETS+FR case in PG&E CAISO, EnerVenue's high cost assumption yields significantly better NPV than Liion low cost assumption across all durations.
- For ETS case in PG&E CAISO, EnerVenue's NPV is generally more favorable over Liion.

The colored ribbons represent the range between low and high capital costs and the line represents the base assumption.

ETS + FR

ETS

PG&E CAISO

Conclusions

Conclusions

- There are three main factors that distinguish the EnerVenue system from a generic Lithium-ion reference point:
 - Cost
 - Life
 - Performance
- Capital cost is slightly higher for the EnerVenue system in 2025
- Life is much longer for the EnerVenue system, overcoming the cost gap.

The EnerVenue system results in higher NPV in nearly all cases

dave.shultz@enervenue.com

+1 (617) 872-1982

Dave Shultz

VP of Sales, Americas

Chad Spring Associate Director, Business Development

+1 (720) 819-5711 chad.spring@enervenue.com

Nabil Contreras

Director of Sales, Americas

+1 (754) 236-9926 nabil.contreras@enervenue.com **Spencer Nervig** Senior Director, Product Management and Application Engineering

+1 (916) 261-9744 spencer.nervig@enervenue.com Brad Dore Senior Director, Marketing

+1 (916) 207-7355 brad.dore@enervenue.com

Randy Selesky

Chief Revenue Officer

+1 (847) 420-7994 randy.selesky@enervenue.com

Contacts

Thank You!

Same C