



### Leakage with Forestry and Agriculture Offset Projects: Issues and Options

Brian C. Murray Director for Economic Analysis Nicholas Institute for Environmental Policy Solutions Duke University

**EPRI** Offsets Workshop

February 19, 2009

Washington, DC





## What is Leakage?

- Efforts targeted to reduce emissions in one place simply shift emissions to another location or sector *where they remain uncontrolled or uncounted*.
- Types
  - International: shifting from an uncapped country to a capped country
  - Subnational:
    - Shifting from a capped source to an uncapped source
    - Shifting from an offset project
      - to a source in the same uncapped sector
      - to a source in another uncapped sector









# Why Leakage Occurs

- Leakage occurs
  - "whenever the spatial scale of the intervention is inferior to the full scale of the targeted problem" (Wunder 2008)
  - Rules, regulations, and incentives for action affect only part of the potential participants or emissions sources
- Economic forces: Supply/demand supplanted by the project is met elsewhere
  - Formal markets
  - Other institutional arrangements





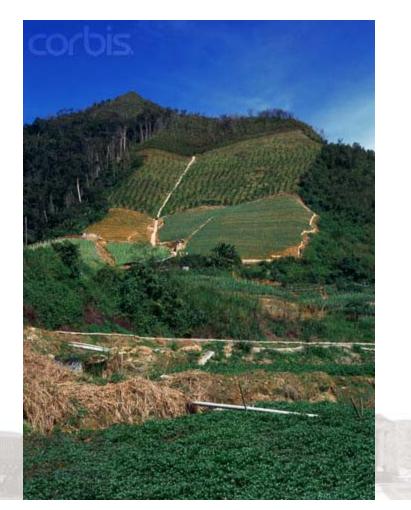
# Leakage as an issue in forestry and agriculture projects

- Leakage is not unique to forest and agriculture projects
- But, features of forestry and agriculture make them susceptible
  - Fixed land base: Land use change has spillover effects
  - Commodity markets are often broad in scope (regional, national, global)



# Nicholas Institute for Environmental Policy Solutions Duke University Example








Afforestation project: agricultural land



Deforestation elsewhere to clear land For agriculture







## Why do we care about leakage?

- Erodes the GHG benefits/offset value of a project
- Can be difficult to measure
- Difficult to enforce due to incomplete contracts
- Potential to undermine a projectbased offset system



# Does leakage really exist?

#### ✓ Wear and Murray (2004)

Table 9

✓ Evidence: Net effects of federal timber harvests in Pacific Northwest.

- ✓ Harvests elsewhere offset reductions by 84%
- $\checkmark$  Denominated in timber, not carbon

#### √Wu (2002) – CRP program slippage

328 D. N. Wear, B.C. Murray | Journal of Environmental Economics and Management 47 (2004) 307-330

| Leakage effects <sup>a</sup>     |        |                              |
|----------------------------------|--------|------------------------------|
| Public harvest timber reductions |        |                              |
| West coast                       | 1200.4 |                              |
| Inland west                      | 866.8  |                              |
| Total west                       | 2067.2 |                              |
| Induced harvests elsewhere       |        | Percent leakage <sup>b</sup> |
| Western private lands            | 894.6  | 43.3%                        |
| South                            | 298.9  |                              |
| US total                         | 1193.5 | 57.7%                        |
| Canada                           | 550.4  |                              |
| North America total              | 1744.0 | 84.4%                        |

<sup>a</sup> All quantities are in million board feet, timber scale (1990-1995 annual average).

<sup>b</sup>Leakage = Induced harvest in area i divided by total west public harvest reduction.



# Predictive Estimates:

#### Program targeted at specific activities by region

120

Land Economics

February 2004

TABLE 2 Avoided Deforestation Leakage Results (All Quantities Are Percentages)

| Region             | No Harvesting<br>Allowed | Harvesting<br>Allowed |  |
|--------------------|--------------------------|-----------------------|--|
| Pacific Northwest— |                          |                       |  |
| East Side          | 8.9                      | 7.9                   |  |
| Northeast          | 43.1                     | 41.4                  |  |
| Lake States        | 92.2                     | 73.4                  |  |
| Corn Belt          | 31.5                     | -4.4                  |  |
| South-Central      | 28.8                     | 21.3                  |  |

|               | TABLE 3                      |
|---------------|------------------------------|
| Afforestation | Program Leakage Estimates by |
| Region (All   | Quantities Are Percentages)  |

| Region        | Leakage<br>Estimate (9 |  |
|---------------|------------------------|--|
| Northeast     | 23.2                   |  |
| Lake States   | 18.3                   |  |
| Corn Belt     | 30.2                   |  |
| Southeast     | 40.6                   |  |
| South-Central | 42.5                   |  |

Source: Murray et al, Land Economics (2004)





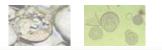
## Predictive Estimates: National-scale Programs

#### Table 6-2: Leakage Estimates by Mitigation Activity at a GHG Price of \$15/t CO<sub>2</sub> Eq.

| All quantities | are on an | annualized | basis for | the time p | period 2010 | -2110. |  |
|----------------|-----------|------------|-----------|------------|-------------|--------|--|
|                |           |            |           |            |             |        |  |

| Selected<br>Mitigation Activities | A<br>GHG Effects<br>of Targeted<br>Payment<br>(Tg CO <sub>2</sub> Eq.) | B<br>Net GHG<br>Effects of<br>All Activities<br>(Tg CO <sub>2</sub> Eq.) | C<br>Indirect GHG<br>Effects from<br>Nontargeted<br>Activity <sup>a</sup><br>(Tg CO <sub>2</sub> Eq.) | D<br>Leakage<br>Rate <sup>b</sup><br>(%) |
|-----------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------|
| Afforestation only                | 137                                                                    | 104                                                                      | -33                                                                                                   | 24.0                                     |
| Afforestation + forest management | 338                                                                    | 348                                                                      | 10                                                                                                    | -2.8                                     |
| Biofuels                          | 84                                                                     | 83                                                                       | -1                                                                                                    | 0.2                                      |
| Agricultural management           | 230                                                                    | 231                                                                      | 1                                                                                                     | -0.1                                     |
| Agricultural soil carbon          | 154                                                                    | 145                                                                      | -9                                                                                                    | 5.7                                      |

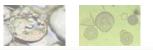
<sup>a</sup> Indirect effects: C = (B - A).


<sup>b</sup> Leakage rate: D = -(C/A) x 100; rounding occurs in table.

Note: Negative leakage rate in D refers to beneficial leakage (i.e., additional mitigation outside the selected activity region, also called positive leakage).



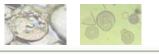
6-6






## Leakage Myths

- Leakage is the same as "activity shifting"
  - Only if it causes the emissions to shift outside of the accounting/policy boundaries
- All leakage is bad
  - You can get positive spillover effects (but they seem rarer)
- Leakage does not occur if projects are too small to affect the market price
  - Other way around
  - Small projects don't affect market price because of leakage
    - there are a lot of other market participants who can replace the project's contribution to the market without disruption






# What can we do about leakage?

- Ignore it
- Adjust the cap
- Make the cap comprehensive
  - All emissions get counted
  - Nothing leaks
- Minimize through project design
  - Focus offsets on activities with low leakage potential
  - Minimize local leakage through contracts?
- Discount all credits
  - Estimate leakage (e.g., econometrically)/hold back credits
  - Option: true-up ex post with systemwide accounting







## Confessions of a Leakage Estimator ...

# I'd like to try another way than prediction and discount









- Set aside a leakage buffer for offsets
- Measure net changes nationally
- Reconcile project and national accounts
- Challenge:

Separating out leakage from natural variation of carbon in the system

-Work in progress