

GHG Emissions Offsets: Definition, Benefits and Interaction with GHG Cap-and-Trade Systems

EPRI GHG Emissions Offset Policy Dialogue Workshop 1 Thursday, June 26, 2008

Adam Diamant
Senior Project Manager
Global Climate Research Program

Two Distinct Types of Carbon "Markets"

- Allowance markets "Cap and trade" programs that allocate GHG emissions which are traded to achieve compliance goals.
 - AAU trading between countries under the Kyoto Protocol
 - –EU Emissions Trading Scheme (EU-ETS)
 - Northeast Regional GHG Initiative (RGGI)
- GHG offset / credit markets "Baseline and credit" programs
 that award GHG offsets for specific projects or activities that
 reduce GHG emissions against a project-specific baseline and
 are traded and used for compliance purposes.
 - –Kyoto Protocol's Clean Development Mechanism (CDM)
 - Kyoto Protocol's Joint Implementation (JI) program
 - -Australia's NSW Greenhouse Gas Abatement Scheme (GGAS)
 - -Chicago Climate Exchange (CCX)

What are GHG Offsets?

Project-based or programmatic GHG reductions that are real, additional, permanent, measurable and verifiable generated in sectors and regions outside of the boundaries of a GHG emissions cap and trade program.

Compliance market:

"Regulated" GHG or CO₂ emissions markets where offsets can be used for compliance under mandatory cap-and-trade schemes (e.g. Kyoto – CDM/JI; RGGI)

Voluntary market:

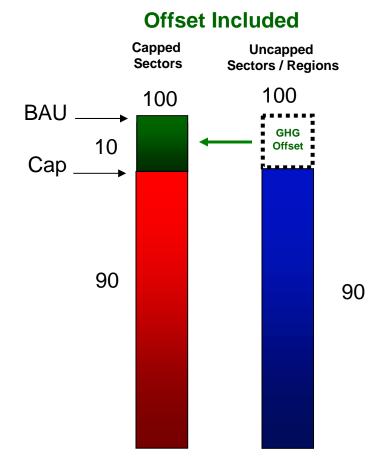
Individuals and companies buying GHG or CO₂ offsets on a voluntary basis to neutralize or reduce their "carbon footprint." (e.g., CCX, VCS, others)

Terminology

Emissions *Allowance* (aka "Permit")

A right to emit a specified amount of GHG or CO_2 emissions (e.g. 1 allowance = 1 ton CO_2 e GHG emissions)

Emissions Offset (aka "Credits")


Project-based or programmatic GHG or CO_2 emission reductions compared to "business-as-usual" emissions (e.g. 1 offset = 1 ton of CO_2 e GHG *emissions reduction*)

GHG Offsets Can Substitute Emissions Reductions in Uncapped Sectors & Regions for "Internal" Reductions

No Offsets Uncapped Capped Sectors / Regions **Sectors** 100 100 BAU . BAU 90

Total BAU = 200 Units (100+100)Total GHG with Cap = 190 (90 +100)

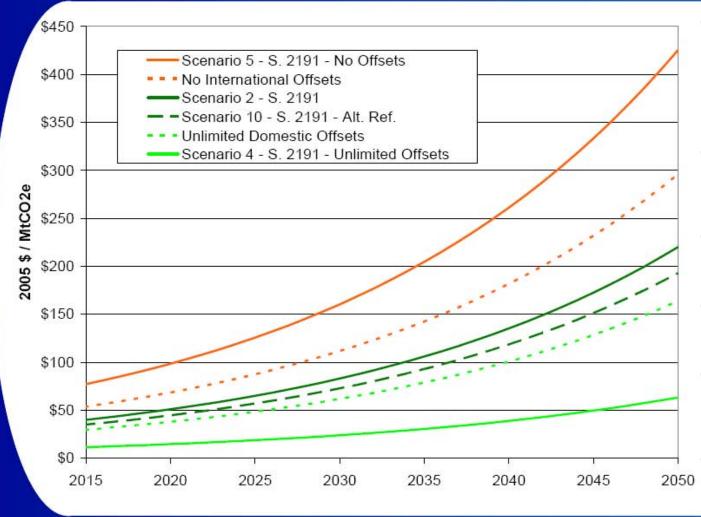
Total BAU = 200 Units (100+100) Total GHG with Cap = 190 (100 +90)

The Potential Benefits of GHG Offsets

- Reduce the cost of compliance with GHG cap and trade programs
- Reduce GHG emissions in uncovered economic sectors and regions
- Provide an incentive to develop new GHG abatement approaches, technologies & methods
- A mechanism to "link" global carbon markets
- A "bridge to the future" that includes a broader array of sectors and nations in GHG mitigation efforts.

Use of Offsets Dramatically Affects Price

	2015	2020	2025	2030	2035	2040	2045	2050
1) EPA Refer	ence							
ADAGE	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
IGEM	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
2) S. 2191								
ADAGE	\$29	\$37	\$48	\$61	\$77	\$98	\$125	\$159
IGEM	\$40	\$51	\$65	\$83	\$106	\$135	\$173	\$220
3) S.2191 W/	Low Interna	ational Act	ion					
ADAGE	\$27	\$35	\$44	\$56	\$72	\$92	\$117	\$149
IGEM	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
4) S.2191 W/	Unlimited C	Offsets						
ADAGE	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
IGEM	\$11	\$15	\$19	\$24	\$30	\$39	\$50	\$63
5) S.2191 w/ I	No Offsets	9						
ADAGE	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
IGEM	\$77	\$98	\$126	\$160	\$205	\$261	\$333	\$425
6) S.2191 Coi	nstrained N	luclear & E	Biomass	320.000	Z - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	5 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
ADAGE	\$39	\$49	\$63	\$80	\$101	\$129	\$164	\$208
IGEM	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
7) S.2191 Coi	nstrained N	luclear & E	Biomass, a	nd CCS				
ADAGE	\$55	\$69	\$88	\$112	\$142	\$181	\$229	\$290
IGEM	n/a	:n/a	n/a	n/a	n/a	n/a	n/a	n/a
8) S.2191 Co	nstrained N	luclear & E	Biomass, a	nd CCS + B	eyond Kyo	to + Natur	al Gas Cart	el
ADAGE	\$55	\$70	\$88	\$112	\$142	\$180	\$228	\$288
IGEM	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
9) Alternative	Reference	•						
ADAGE	n/a	n/a	n/a	n/a	n/a	n/a	rva	n/a
IGEM	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
10) S.2191 AI	t. Ref.							
ADAGE	\$22	\$28	\$36	\$46	\$59	\$75	\$95	\$121
IGEM	\$35	\$45	\$57	\$73	\$93	\$118	\$151	\$193


Source: EPA Analysis of the Lieberman-Warner Climate Security Act of 2008, S. 2191 in 110th Congress March 14, 2008.

EPA Analysis of S. 2191

Scenario Comparison – GHG Allowance Prices (IGEM)

- Compared to the variation in allowance prices between the various alternative technology scenarios, there is a greater variation in allowance prices amongst the alternative offset and international credit scenarios.
- Allowing the unlimited use of domestic offsets and international credits can reduce allowance prices by 71% compared to scenario 2.
- Allowing the unlimited use of just domestic offsets can reduce allowance prices by 26% compared to scenario 2.
- If international credits are not allowed, allowance prices increase by 34% compared to scenario 2.
- If both international credits and domestic offsets are not allowed, allowance prices increase by 93% compared to scenario 2.
- Allowance prices are 12% lower under the alternative reference case compared to scenario 2.

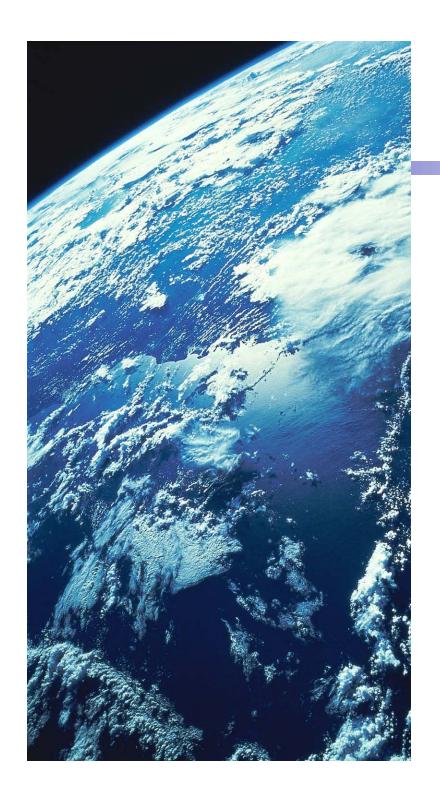
25

EPA's Offset Conclusions re: S.2191

- If use of domestic offsets and international credits are *unlimited*, allowance prices fall 71% as compared to S.2191.
- If use of domestic offsets is unlimited, and international credits are still limited to 15%, allowance prices fall by 26%.
- If international credits are not allowed (or are more expensive than U.S. GHG allowances), and domestic offsets are still limited to 15%, then allowance prices increase by 34%.
- If domestic offsets and international credits are *not allowed*, and the caps must be met solely through emissions reductions in covered sectors, then allowance price increases by 93% compared to S.2191.

Source: EPA Analysis of the Lieberman-Warner Climate Security Act of 2008, S. 2191 in 110th Congress March 14, 2008.

Key Offset Concepts


- Project Baselines A project "baseline" is the schedule of GHG emissions related to a project that would be expected to occur in the absence of the project (aka "Business-as-Usual" (BAU) emissions)
- Additionality A GHG abatement project is considered "additional" if it would not have occurred without the added incentives provided by the carbon market.
- Leakage Refers to increased GHG emissions outside of a GHG abatement project boundary that are directly or indirectly caused by the project.
- Permanence Refers to the potential to reverse GHG emissions reductions achieved by an abatement project.

Different Approaches Can Be Used to Create "Approved" Categories of GHG Offsets

- Pre-approval of GHG offset types (i.e., "Positive List")
 - The relevant regulatory entity determines a priori the types of offsets affirmatively to be allowed for compliance purposes.
 - Typically involves development of approved "project protocols"
 - GHG offsets awarded based on application of protocols
 - NSW-GGAS and RGGI use this approach
- "Project-based" methodology development
 - Offset project proponents submit project-specific methodologies to the relevant regulatory entity for review, evaluation and approval.
 - GHG offsets awarded based on application of specific methodology
 - Potentially more flexible than a simple "positive list," but can require very substantial efforts by both regulators and project proponents.
 - Adopted by the UN's CDM and JI programs.

Thank You

Adam Diamant

Electric Power Research Institute Senior Project Manager Global Climate Research Program 3420 Hillview Avenue Palo Alto, CA 94304 USA

Tel: 510-260-9105

Email: adiamant@epri.com

