

Disruption as an Enabler of Decarbonization: The Prospects of All-Electric Aircraft

22nd Energy and Climate Research Seminar Electric Power Research Institute Washington, DC May 16-17, 2019

Andreas W. Schäfer Air Transportation Systems Laboratory (www.ATSLab.org) University College London (a.schafer@ucl.ac.uk)

Long Times Scales from Concept/Design to Product

Gasoline-electric Lohner-Porsche, 1900. http://www.hybrid-vehicle.org/hybrid-vehicle-porsche.html

95 years

Hugo Junkers' 1924 design for a giant flying wing. The wing was to accommodate 26 cabins for 100 passengers, carry a crew of 10, and have enough fuel for 10 hours of flight. http://www.century-offlight.net/ Aviation%20history/flying%20wings/Early%20Flying%20Wings.htm

Yet, Rapid Technological Change is Possible: US Railroads

Schäfer A., Sweeney J., Draft Paper, 2016

Global Aviation Passenger Demand Growth 5%/yr

Fig. 1. World passenger revenue passenger-km, historical (1950–2011) and projections (Source: Airbus Industries, various years; Boeing Commercial Airplanes Group, various years; McDonnell Douglas, various years; International Civil Aviation Organization (ICAO), various years).

All-Electric Aircraft can eliminate CO₂ and non-CO₂ Warming

Aviation Radiative Forcing Components in 2005

Two Pathways toward All-Electric Aircraft

All-electric VTOL

Hybrid-electric

Improvements in batteries, power electronics, and electric motors

<

16.05.2019

Lilium reveals new air taxi as it celebrates maiden flight

- · Lilium Jet is the world's first all-electric jet-powered five-seater air taxi
- Capable of traveling up to 300km in just 60 minutes, with zero operating emissions
- Lilium will manufacture and operate the Lilium Jet as part of a revolutionary on-demand air taxi service

Munich 16 May 2019: Lilium, the Munich-based startup developing a revolutionary on- demand air taxi service, today revealed its new five-seater air taxi prototype for the first time. The unveiling of the new Lilium Jet came as the all-electric aircraft completed its maiden flight in the skies over Germany earlier this month.

Electric Aircraft Architectures (leading to Distributed Propulsion)

FIGURE 4.1 Electric propulsion architectures. SOURCE: Modified from James L. Felder, NASA Glenn Research Center, "NASA Hybrid Electric Propulsion Systems Structures," presentation to the committee on September 1, 2015.

doi:10.17226/23490 Commercial Carbon Aircraft Propulsion and Energy Systems Research: Reducing Global 2016. Engineering, and Medicine. The National Academies Press. National Academies of Sciences, Emissions. Washington, DC:

(Breguet) Range Equation: All-Electric Aircraft

Hepperle M., 2012. Electric Flight – Potential and Limitations. AVT-209 Workshop on Energy Efficient Technologies and Concepts Operation, Lisbon, Portugal, pp. 1–30.

Battery Specific Energy has increased by \sim 3%/yr

(A doubling every 20-25 years)

Crabtree G., Kócs E., Trahey L., 2015. The energy-storage frontier: Lithium-ion batteries and beyond. MRS Bulletin 40, 1067-1076.

Koh H., Magee C.L., 2008. A functional approach for studying technological progress: Extension to energy technology, Technological Forecasting and Social Change 75(6):735-758

All-Electric Aircraft Market Size by Distance

Gnadt A.R., Self R., O'Sullivan "Technological, Economic and Environmental A., Synodinos A.P., Torija A.J., 2019. "Technological, Econom Prospects of All-Electric Aircraft", Nature Energy 4:160-166. Dray L.M.D Doyme K Barrett S.R.H Schäfer A.W.,

Key Air Transportation Characteristics

O'Sullivan Economic and Environmental Gnadt A.R., Self R., Prospects of All-Electric Aircraft", Nature Energy 4:160-166. "Technological, Dray L.M.D., Doyme K., A., Synodinos A.P., Torija A.J., 2019. Barrett S.R.H., Schäfer A.W.,

Direct Operating Cost (DOC)

- Electrification affects 75% of DOC (capital costs, maintenance, energy, en-route / airport charges)
- Capital costs: lower-cost propulsors, absence of fuel system and APU versus higher-cost, first set of batteries
- Maintenance costs: potentially lower engine maintenance costs versus higher airframe maintenance and battery replacement costs
- Cost-effectiveness depends mainly on battery performance and costs, jet fuel and electricity price
 - 2015 jet fuel prices (\$1.8/Gal) and advanced batteries (800 Wh/kg, \$100/kWh) would require electricity prices of max \$0.05/kWh
 - A carbon tax of \$100/tCO₂ would allow electricity prices of max \$0.09/kWh

Costs of Renewable Power are declining

Aircraft Warming Intensity

A., Synodinos A.P., Torija A.J., 2019. "Technological, Economic and Environmental Gnadt A.R., Self R., O'Sullivan Prospects of All-Electric Aircraft", Nature Energy 4:160-166. Dray L.M.D., Doyme K., Barrett S.R.H., Schäfer A.W.,

Carbon Intensity of Electricity needs to decline strongly

Database.html) ac.at/ R esearchPrograms/Energy/IPC cenarios Database (http: World Summary Energy Balances research/r source: IPCC AR5 web/home 2018. Data IEA,

Electric Power Implications

- Using all-electric aircraft for flight segments up to 400-600 nmi (741-1,111 km) within the 2015 flight network would result in extra electricity demand of
 - 110-340 TWh (0.6-1.7%) globally
 - 23-83 TWh (0.6-2.2%) US
 - 11-33 TWh (1.3-3.7%) UK
- Around 15% of all flights in early morning (overnight charging) → remaining 85% determine investments into new power generation capacity (assuming 35% capacity factor)
 - 31-120 GW globally
 - 6.6-27 GW (US)
 - 1.2-3.6 GW (UK)

All-Electric Aircraft Noise Analysis

- Noise contours of All Electric Aircraft
 - Using MIT aircraft specs and flight profile
- Parametric study to evaluate noise vs.
 - Number of propulsors
 - Battery specific energy
 - Battery charging strategies
 - Mission length
- Conclusions
 - Noise benefits could be substantial on short missions
 - Noise highly dependent on all operational constraints and procedures, i.e., flight profiles and recharging strategies
 - Take-off noise lower than conventional aircraft, due to lower fan pressure ratios and absence of combustion noise
 - Approach noise likely higher than conventional aircraft, due to higher aircraft weight

O'Sullivan and Environmental Self R. Economic Gnadt A.| Energy 4:160-166 echnological D. Z: Dray Nature 2019 of All-Electric Aircraft S.R.I Torija Barrett A.P., A., Synodinos Schäfer A.W. Prospects

Modelling the Introduction of Battery Electric Aircraft

www.ATSlab.org

Simulated Future Projected Electric Aircraft Network

UCL ATSlab

50

40

30

20

10

0

1825

1875

1900

1850

OCOMOTIVE WORKS

INCORPORATED

Winners and Losers: US Railroads

Fuel Shares: Yard, Passenger, and Freight Sector Winners Losers 100 Diesel Wood 90 80 THE BALDWIN GROUP 70 % Fuel Shares, 60

Electricity

2000

1975

Fuel Oil

1925

1950

Source: Schäfer and Sweeney (2016)

Conclusions

- To become a feasible alternative, all-electric aircraft require
 - significantly higher specific energy and power batteries
 - significantly higher specific power aircraft motors and power electronics
 - lower battery costs and enabling economic conditions
- Enabling technologies and factors
 - Electric air taxis
 - Turbo and hybrid-electric aircraft
 - New business models?
- Mutually reinforcing factors with time scales measured in decades
 - Rising battery performance and declining costs, electricity grid decarbonization, strong decline in renewable power generation costs
 - R&D on all-electric aircraft design and key components needs to start now

Electric Aircraft Research Team

- Prof. Steven R.H. Barrett (MIT)
- Dr. Lynnette Dray (UCL)
- Dr. Khan Doyme (UCL)
- Roger Gardner (U. Southampton)
- Mr. Albert Gnadt (MIT)
- Dr. Chez Hall (U. Cambridge)
- Mr. Weibo Li (UCL)
- Mr. Marius Macys (UCL)
- Dr. Antonio Martinez (U. Southampton)
- Prof. Andreas W. Schäfer (UCL)
- Prof. Rod Self (U. Southampton)
- Ms. Vanessa Schröder (ETH Zurich)
- Dr. Aidan O'Sullivan (UCL)
- Mr. Bojun Wang (UCL)
- Mr. Kinan Al'Zayat (UCL)

CAMBRIDGE