

Negative Emissions Technologies and Reliable Sequestration: A Research Agenda

Stephen Pacala (Chair) Christopher Jones (DAC co-Lead)

> October 24, 2018 May 16, 2019

<u>Carbon Mitigation Technologies</u> reduce or eliminate carbon dioxide emissions from fossil fuel use, cement production and land use change.

<u>Negative Emissions Technologies (NETs)</u> remove carbon dioxide from the atmosphere and store it on or underneath the Earth's surface. This study considers only storage in terrestrial or coastal ecosystems or in geologic reservoirs. Disposal in the oceans is not considered.

Removing CO_2 from atmosphere and storing it has exact same impact on atmosphere and climate as preventing an equal amount of CO_2 from being emitted. In some cases, deploying NETs may be cheaper and less disruptive than emissions reductions.

NETs are best viewed as a component of mitigation portfolio, rather than a way to decrease atmospheric concentrations of CO_2 only after anthropogenic emissions have been eliminated.

Reduce Carbon Sources

- Energy efficiency
- Low or zero-carbon fuel sources

Enhance Carbon Sinks

Negative emissions technologies:

- Coastal blue carbon
- Terrestrial carbon removal and sequestration
- Bioenergy with carbon capture and sequestration (BECCS)
- Direct air capture
- Carbon
 mineralization
- Geologic sequestration

Rationales for development and deployment of NETs in USA.

- 1. Reduce carbon pollution (i.e. 45Q tax credit in Freedom Act)
- 2. Reduce climate change
- 3. Economic competitiveness and technological leadership
- 4. Control carbon pollution/climate change with less decrease in fossil fuel use

For example.... Commercial Aviation

	Option 1: Develop Cellulosic Biofuels	Could be expensive and requires land to grow feedstock	
	Option 2: Capture and store 10 kg of atmospheric CO ₂ for each gallon of fossil fuel consumed	If this cost \$50/tCO ₂ then the offset would cost an additional \$0.50/gallon	

The National Academies of SCIENCES ENGINEERING MEDICINE

Statement of Task

- Identify the most urgent unanswered scientific and technical questions needed to:
 - assess the benefits, risks, and sustainable scale potential for carbon dioxide removal and sequestration approaches in terrestrial and coastal environments
 - increase the commercial viability of carbon dioxide removal and sequestration
- Define the essential components of a research and development program and specific tasks required to answer these questions
- Estimate the costs and potential impacts of such a research and development program to the extent possible in the timeframe of the study
- Recommend ways to implement such a research and development program

Carbon dioxide removal can be part of a carbon capture, utilization and sequestration system

Captured Carbon Carbon waste gases are captured

at its point of production or from the atmosphere and may be separated from other byproducts, compressed and/or transported. **Sequestered:** Captured carbon may be disposed of thousands of feet underground where it can remain permanently trapped

Utilized: CO₂, CH₄ and biogas may be used as a feedstock for products that have market value, such as fuels, building materials, plastics or other useful solids, chemicals or animal feed. (see also sister study: *Gaseous Carbon Waste Streams Utilization: Status and Research Needs, http://nas-sites.org/dels/studies/gcwu/*).

Estimate that utilization may account for $\leq 10\%$ of emissions reduction

The National Academies of Academies of MEDICINE

How large is potential market for NETs likely to be? Or equivalently, how much carbon uptake is needed to meet Paris Agreement goals?

~10 GtCO₂/y globally by midcentury

~20 GtCO₂/y globally by the century's end

The National Academies of Academics of MEDICINE

Negative Emissions Technologies

Coastal blue carbon

Direct air capture (DAC)**

Terrestrial carbon removal and sequestration

Bioenergy with carbon capture and sequestration (BECCS)**

Geologic sequestration (partner with **)

Negative Emissions Technology	Estimated Cost (\$/tCO ₂) L = 0- 20 M =20 -100	Upper-bound* for safe* Potential Rat of CO ₂ Removal Possible Given Current Technology and Understanding and at <u><</u> \$100/tCO ₂ (GtCO ₂ /y)		
	H = >100	US	Global	
Coastal blue carbon	L	0.02	0.13	
Afforestation/ Reforestation	L	0.15	1	
Forest management	L	0.1	1.5	
Agricultural soils	L to M	0.25	3	
BECCS	M	0.5	3.5-5.2	

- Four options ready to be scaled up, but their capacity is substantially less than expected demand/need
- Limited due to realistic rates of adoption of agricultural soils practices, forestry management practices and waste biomass capture

- Safe and economical <u>direct air capture</u> or carbon mineralization would have <u>essentially unlimited capacity</u> to remove carbon
 - Direct air capture currently limited by high cost
 - Carbon mineralization currently limited by lack of fundamental understanding

 Blue carbon has capacity that is less than the other options, but potentially very low incremental cost given large co-benefits

<u>Recommendation:</u> The nation should launch a substantial research initiative to advance negative emissions technologies as soon as practicable:

- (1) improve coastal blue carbon, afforestation/reforestation, changes in forest management, uptake and storage by agricultural soils, and BECCS to increase capacity and to reduce negative impacts and costs
- (2) make rapid progress on direct air capture and carbon mineralization technologies, which are underexplored but would have essentially unlimited capacity if high costs and many unknowns could be overcome
- (3) advance NET-enabling research on biofuels and carbon sequestration that should be undertaken anyway as part of an emissions mitigation research portfolio

Rational for Research Investment

- States, local governments, corporations, and countries now make or plan large investments in NETs (e.g. ~30% of planned emissions reductions).
 - Advances in NETs will create jobs and benefit US economy, especially if intellectual property is held by US companies.
- Unlike wind, solar and unconventional gas, NETs have not yet received public investment at a scale consistent with:
 - need for NETs that can solve substantial fraction of climate problem
 - possible magnitude of return to US economy

Existing DAC Approaches

The National Academies of MEDICINE

TEA for Carbon Engineering-Inspired Process

TABLE 5.4. Summary of carbon capture costs for a liquid solvent direct air capture system powered by natural gas or coal.

Cost (\$/tCO ₂)	Natural Gas	Coal
Capture Cost ⁱ	147-264	140-254
Net-Removed Cost ⁱⁱ	199-357	00
Produced Cost, Oxy-Fired Calciner ⁱⁱⁱ	113-203	00

ⁱBasis = 1Mt net CO₂ removed from air.

ⁱⁱBasis = per net unit of CO₂ removed with an average of 0.3 MtCO₂ for natural gas and zero for coal

ⁱⁱⁱBasis = per net unit of CO₂ produced including co-capture of CO₂ from natural gas oxy-fired kiln with an average of 1.3 MtCO₂.

- Complex process, costs vary depending on how to draw system boundary.
- Carbon Engineering targets fuel production
- Co-fires natural gas for high T heat, captures CO_2 and blends with CO_2 from air
- Generally speaking, costs range from ~\$100-\$400/t, depending on assumptions
- All scenarios offer substantially lower costs than anticipated from the APS 2011 report

The National SCIENCES Academies of MEDICINE

Existing DAC Approaches

Solid adsorbent, low T, T/VSA

- Climeworks, Global Thermostat, others?
- Much less complex, but contingent on long-lifetime sorbent materials
- Capital intensive, sorbent cost largest driver

NGINFFRING

Medicine

The National

Academies of

Adsorption based approach TEA completed, building upon prior work:

https://pubs.acs.org/doi/10.1021/acs.iecr.6b03887

Costs per ton CO_2 can be much lower than anticipated (APS report, 2011, $$600+/tCO_2$)

TEA for Generic Solid Sorbent Process

TABLE 5.8. Input parameters used for cost estimates for the generic solid sorbent direct air capture system, with selected outputs.

Parameters	1-Best	2-Low	3-Mid	4-High	5-Worst	
Adsorbent Purchase Cost (\$/kg)	15	50	50	50	100	
Adsorbent Life (y)	5	0.5	0.5	0.5	0.25	
Sorbent Total Capacity (mol/kg)	1.5	1.0	1.0	1.0	0.5	
Desorption Swing Capacity (mol/mol)	0.90	0.8	0.8	0.8	0.75	
Contactor to Adsorbent Ratio (kg/kg)	0.1	0.1	0.2	1.0	4.0	
Desorption Pressure (bar)	0.2	0.5	0.5	0.5	1.0	
Outputs						
Final Desorption Temperature (K)	340	360	360	360	373	
Cycle Time (min)	39	16	28	42	26	

TABLE 5.9. Estimated annualized capital (CAPEX) and operating (OPEX) costs for a generic solid sorbent direct air capture system with a capacity of 1 Mt/y CO₂ removal.

Parameters	1-Best	2-Low	3-Mid	4-High	5-Worst	
Adsorbent Capex	3.6	70	122	186	988	
Adsorption Opex	1.3	9	12	19	4.3	
Blower Capex	3.6	2.1	3.7	6.7	13.7	
Vacuum Pump Capex	4.5	2.6	4.7	8.5	17.4	
Steam Opex	2.5	2.2	2.4	3	43	
Condenser Capex	0.03	0.07	0.075	0.1	0.4	
Contactor Capex	2.2	1.3	2.3	4.1	8.4	
Vacuum Pump Opex	0.3	0.2	0.2	0.24	0.3	
Total Cost	18	88	148	228	1080	

Annualized capital costs assume 10 year lifetime of non-sorbent materials

• \$18-\$1080+/t

• Lower bound likely unattainable in short term

Cost for first
 Climeworks plant
 \$600/t

 Study projects costs of \$100-300/t in next decade

The National Academies of Academics of MEDICINE

Conflict of Interest Statement

- Georgia Tech receives research funding from Global Thermostat, LLC
- Georgia Tech has licensed intellectual property to Global Thermostat, LLC
- Jones has a (very small) financial interest in *Global Thermostat, LLC*.

Useful overview papers:

Sorbent design and development:

Didas et al. *Acc. Chem. Res.* **2015**, 48, 2680.

Review of DAC:

Sanz et al. *Chem. Rev.* **2016**, 116, 11840.

Global Thermostat, LLC, 3000 t/yr unit Huntsville, AL, September 2018

The National Academies of SCIENCES ENGINEERING MEDICINE

Thank you!

For more information and to subscribe for updates:

http://nas-sites.org/dels/studies/cdr/

Join the conversation on Twitter: #CarbonRemoval

DAC Team:

Christopher Jones (GT) cjones@chbe.gatech.edu Jennifer Wilcox (WPI) Dane Boysen (Modular Chemical) Mark Barteau (Texas A&M)

