Making Sense of Equilibrium Climate Sensitivity and Other Climate Responses

Chris Pennsylvania EPRI Climate Sector

Chris E. Forest

Pennsylvania State University

EPRI Climate Science 2018 Meeting

17 May 2018

Some "Known Knowns" about **Anthropogenic Climate Change**

 Atmospheric CO₂ concentration has increased since pre-industrial era from 275 to over 410 ppm

Some "Known Knowns" about Anthropogenic Climate Change

- Atmospheric CO₂ concentration has increased since pre-industrial era from 275 to over 410 ppm
- Global-mean Temperature has increased since pre-industrial by over 1°C (1.8 °F)

Some "Known Knowns" about **Anthropogenic Climate Change**

- Atmospheric CO₂ concentration has increased since pre-industrial era from 275 to over 410 ppm
- Global-mean Temperature has increased since pre-industrial by over 1°C (1.8 °F)
- Over 90% of the extra heat is stored in the oceans and its accumulating fast.

What matters for long-term climate prediction of global mean temperature?

- Controls on:
 - Long-term warming
 - Delay by ocean
 - Net forcing

How do we define Equilibrium Climate Sensitivity? Start with a "simple" equation for the Earth's Energy Balance.

Consider the energy balance equation for the change in globalmean surface temperature (ΔT) from equilibrium:

$$c_p \frac{d\Delta T(t)}{dt} = F(t)$$

Change in global Future mean heat content Forcings

ceforest@psu.edu

$$\lambda \Delta T(t) - \Phi_o(K_v)$$

Flux of heat Net into deep-Feedbacks $\lambda = 1/S$ ocean

Conceptually: This is a good framework for organizing how climate sensitivity is defined.

Let's start with the energy balance equation for the change in global-mean surface temperature (ΔT) from equilibrium:

Change in global Future mean heat content Forcings

POINT 1:

At equilibrium, d/dt = 0 and the heat flux into the deep ocean is zero

so we define Equilibrium Climate **Sensitivity (ECS) as:**

ceforest@psu.edu

$$-\lambda\Delta T(t) - \Phi(x_v)$$

Net Feedbacks $\lambda = 1/S$

Flux of heat into deepocean

$$\Delta T_{2x} = \frac{\Delta F_{2x}}{\lambda} = \mathbf{ECS}$$

5

Let's start with the energy balance equation for the change in global-mean surface temperature (ΔT) from equilibrium:

Change in global Future mean heat content Forcings

POINT 2: The Feedback term and the Ocean Heat Flux are always trying to counteract the Forcing term ...

POINT 3: ... but, Earth has multiple feedbacks and they are not always active. So the net feedbacks are changing with time and are estimated as Effective **Climate Sensitivity.** ceforest@psu.edu

$$-\lambda\Delta T(t) - \Phi_o(K_v)$$

Net Feedbacks $\lambda = 1/S$

Flux of heat into deepocean

$$\lambda_{eff} = \frac{F(t) - \Phi_o(K_i)}{T(t)}$$

Why does it matter if feedbacks change with time? Let's visualize the transition to equilibrium.

Equilibration of CESM and CMIP5 models а

Knutti, Rugenstein, and Hegerl, 2017, Nature Geoscience, DOI: 10.1038/NGEO3017

$$\left| \lambda_{eff} = \frac{F(t) - \Phi_o(K_v)}{T(t)} \right|$$

Year 1–3 $\lambda = 2.0 \text{ W m}^{-2} \text{ per }^{\circ}\text{C}$ ECS implied = 2.1 °C

Year 50-100 $\lambda = 0.87 \text{ W m}^{-2} \text{ per }^{\circ}\text{C}$ ECS implied = 3.0 °C

Year 1000-3000 $\lambda = 0.75 \text{ W m}^{-2} \text{ per }^{\circ}\text{C}$ ECS implied = 3.3 °C

Why does it matter if feedbacks change with time?

Surface temperature anomaly

Knutti, Rugenstein, and Hegerl, 2017, Nature Geoscience, DOI: 10.1038/NGEO3017

Why does it matter if feedbacks change with time?

Knutti, Rugenstein, and Hegerl, 2017, Nature Geoscience, DOI: 10.1038/NGEO3017

Here is an example using the MIT MESM, an Earth System Model of Intermediate Complexity, with ECS = 3.01 K

Radiative Imbalance (Wm^{-2}) $+\Phi_o(t)$ $\lambda T(t)$

Orange: Years 1-20 Blue: Years 20-300

<u>ceforest@psu.edu</u>

Here is an example using the MIT MESM with ECS = 6.97 K

Radiative Imbalance (Wm^{-2}) $\Phi_o(t)$ $\lambda T(t)$

Orange: Years 1-20 Blue: Years 20-300

ceforest@psu.edu

422.15

Climate System Feedbacks

<u>ceforest@psu.edu</u>

(IPCC WG1 AR5 Figure 9.43)

Understanding Climate System Feedbacks (IPCC WG1 AR5 Figure 9.43)

Do Climate Feedbacks stay constant with time? NO!

nature geoscience

Impact of decadal cloud variations on the Earth's energy budget

Chen Zhou*, Mark D. Zelinka and Stephen A. Klein

Geophysical Research Letters

Variation in climate sensitivity and feedback parameters during the historical period

J. M. Gregory^{1,2} and T. Andrews²

Gregory and Andrews, 2016, GRL

NO! But why not?

Do Climate Feedbacks stay constant with time? Because cloud patterns shift when Sea Surface Temperatures change

ceforest@psu.edu

Mauritsen, 2016, Nature Geo

How uncertain are estimates of ECS now?

ceforest@psknedtijet al. (2017, Nature Geosciences)

Forest et al. Results

Latest Results from (Libardoni et al., 2018)

to forcing warming in response nstraints from the observed 8

Knutti et al. (2017, Nature Geosciences Fquilibrium Climate Sensitivity (°C)

nedian and 90' e range ikely and favor er for uncertain
ndard error je
and 95% ised on time co
90% standard error 90% e from short te aper for uncert
90% 95% and 90% th observation
ard error, seep t estimate and or 1970-2009 or 2000s
%
ent with observemor
value and 90% 90% 16 2014 95%
0% for data un 0% for data un nsistent model
% 4 Q \

Latest Results from Libardoni et al. (2018, in prep) Climate Response Surface

Revised PDFs using only 1991-2010 Ocean Heat Content data

Percentiles: 5, 50, 95%

- ECS: 2.4, 3.2, 4.6 °C
- TCR: 1.4, 1.7, 2.0 °C
- Faer: -0.47,-0.24,-0.05 Wm⁻²
- sqrt(K_v): 0.9, 1.8, 3.7 cms^{-1/2}

What's missing from this discussion?

Earth System Sensitivity (Very long time-scale feedbacks):

- Carbon cycle feedbacks
- Ice sheet feedbacks
- Ocean circulation feedbacks on heat and carbon budgets
- Observations of Paleoclimate
- Other regional or transient climate sensitivity issues

Conclusions:

- Equilibrium Climate Sensitivity is defined by the set of feedbacks.
- Feedbacks change with time and are "model" dependent.
- Not accounting for changing feedbacks leads to wrong estimates of ECS.
- The additional climate data from the past 20 years has a significant impact on our understanding of the ECS and TCR.

<u>ceforest@psu.edu</u>

20

How uncertain are estimates of TCR now?

ceforest@psknedtijet al. (2017, Nature Geosciences)