Technology Learning Curves and the Future Cost of Electric Power Generation Technology

Ines Azevedo,^a Paulina Jaramillio,^a Ed Rubin^a and Sonia Yeh^b

^a Dep't of Engineering and Public Policy, Carnegie Mellon University ^b Institute of Transportation Studies, University of California, Davis

Presentation to the EPRI 18th Annual Energy and Climate Change Research Seminar Washington, DC

May 22, 2013

Background

- EPRI has developed the REGEN model to assess the technical, economic, and environmental impacts of U.S. energy supply options and policies
- Assumptions about the future cost of energy supply technologies are critical to model projections; at the present time EPRI uses exogenous specifications of technology-specific capital and O&M costs over time.
- Various types of "learning curves" (experience curves) also have been proposed to relate future technology costs to key parameters such as installed power plant capacity and other factors
- However, there has been little systematic study of how alternative cost projection methods and models affect the outcomes of large-scale energy-economic models

Study Objectives

- Conduct a literature review to characterize the current state of technology learning models for different types of electric power plants
- Review selected large-scale computer models that incorporate endogenous technology learning to draw insights about effects on model results
- Suggest preliminary computer experiments in REGEN to study the impacts of alternative cost projections (based on learning models)
- Provide recommendations for future testing and representation of technological change in REGEN

Technologies of Interest

- PC plants
- PC with CCS
- IGCC plants
- IGCC with CCS
- NGCC plants
- NGCC with CCS
- NG turbines
- Biomass plants

- Nuclear
- Hydroelectric
- Geothermal
- On-shore wind
- Off-shore wind
- Solar PV
- Conc. solar thermal

Draft Report Under Review

TABLE OF CONTENTS

- 1 Executive Summary
- 2 Introduction
- 3 Theory of Technological Change
- 4 Review of Learning Curves for Power Generation Technologies
- 5 Endogenous Technological Learning in Energy Models
- 6 Summary and Conclusions
- 7 Acknowledgements
- 8 References
- 9 Appendices A D

-- Draft for EPRI Review --

Modeling Technology Learning for Electricity Supply Technologies

Draft for EPRI Review -- Phase I Report

to Robin Bedilion Electric Power Research Institute Palo Alto, California

from

Inês Azevedo^a Paulina Jaramillo^a Ed Rubin (PI)^a Sonia Yeh^b

^a Carnegie Mellon University, Pittsburgh, PA ^b University of California at Davis, Davis, CA

April 2013

1

I will present a few highlights from our report

Theory of technological change and learning rate results

Theory of Technological Change

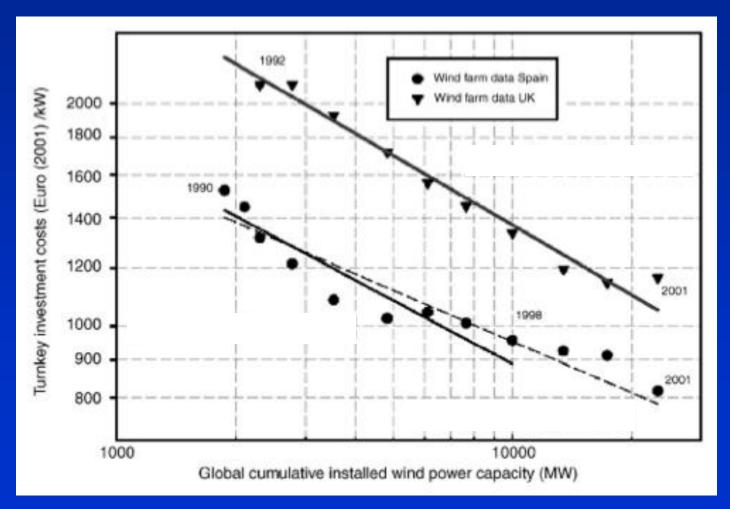
Key drivers of cost reduction include:

- Diffusion/adoption of technology
- Research and development (R&D)
- "Cluster" learning
- "Spillover" effects
- Policies that promote the above

Various types of quantitative models have been proposed to account for these effects

One-Factor Learning Curves are the Most Prevalent

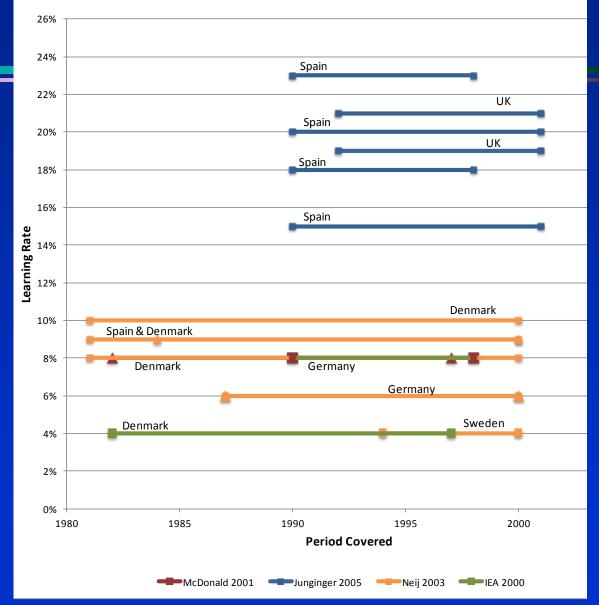
General equation:


$$C_i = a x_i^{-b}$$

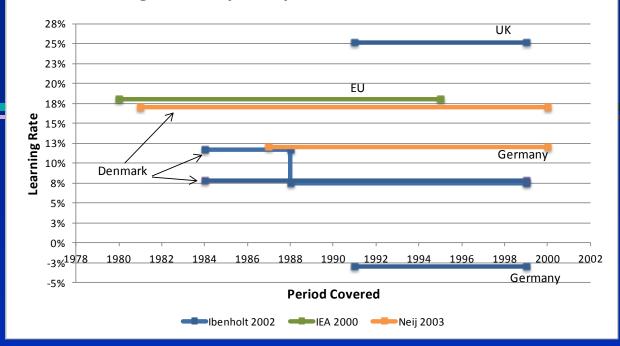
where,

 $C_i = \text{cost to produce the } i^{th} \text{ unit}$ $x_i = \text{cumulative production or capacity thru period } i$ b = learning rate exponenta = coefficient (constant)

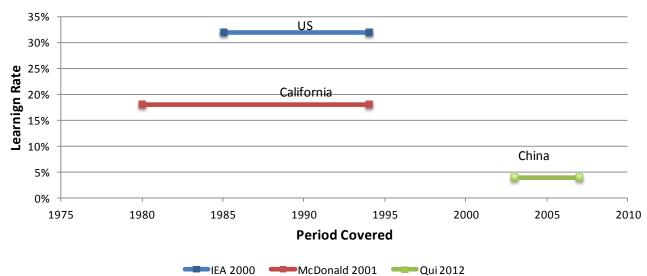
- Fractional cost reduction for a doubling of cumulative production is defined as the <u>learning rate</u>: $LR = 1 - 2^b$ - Some studies report the progress ratio: PR = 1 - LR


Examples of One-Factor Learning (Experience) Curves—Wind Farms

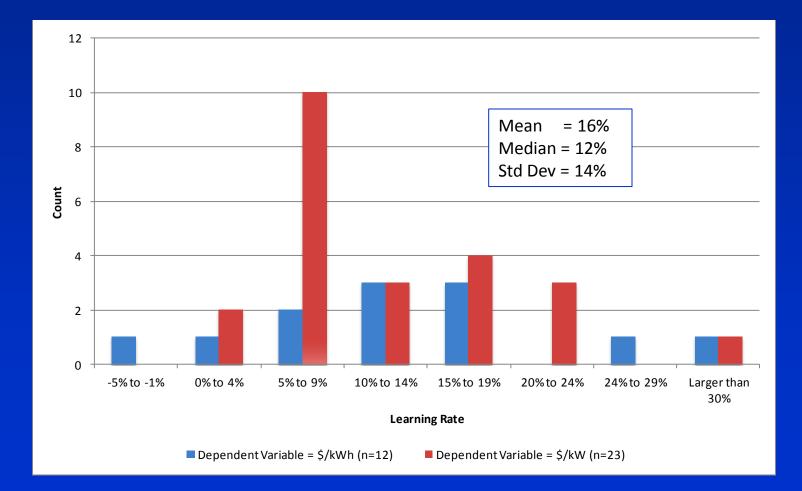
Source: Junginger 2005

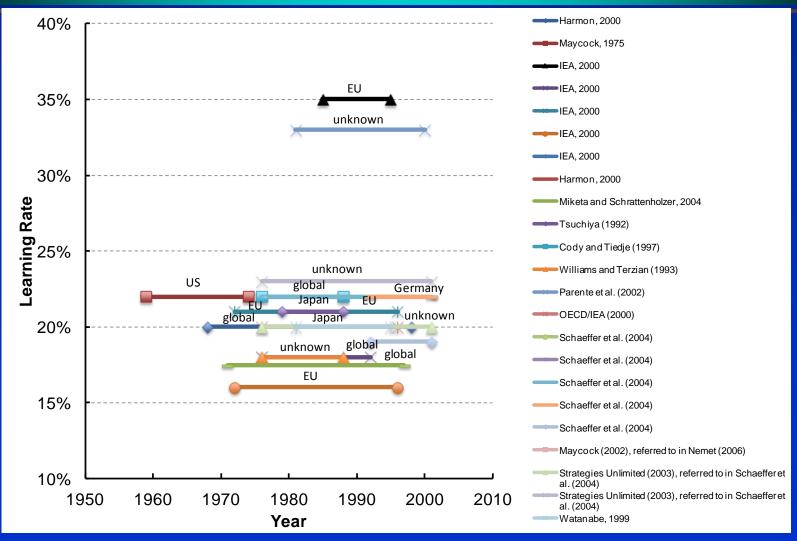

Examples of reported learning rates for wind turbines based on \$/kW

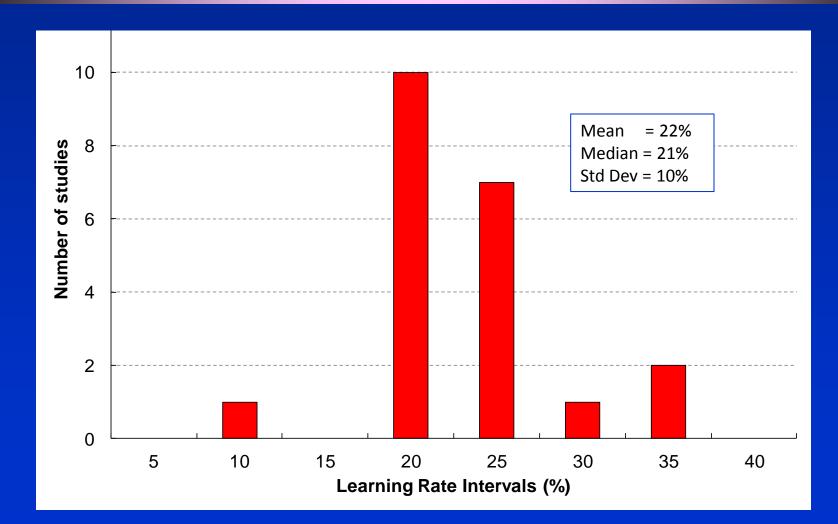
Region: Europe. Dependent Variable: \$/kW

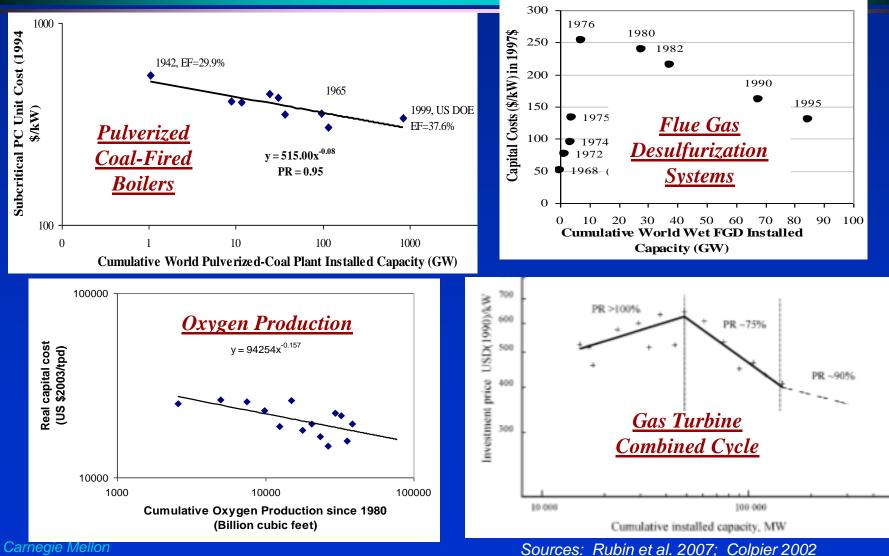


Examples of reported learning rates for wind turbines based on S/kWh

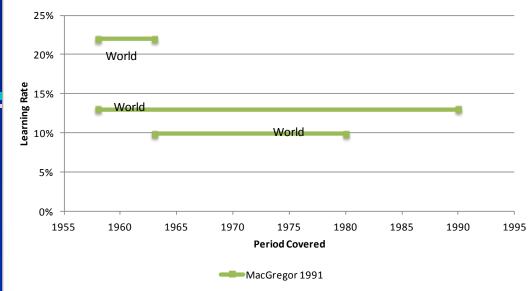

Region: Europe. Dependent Variable: \$/kWh


Region: Multiple. Dependent Variable: \$/kWh

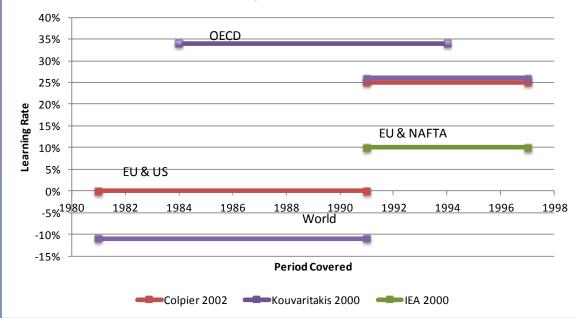

Histogram of Reported Learning Rates for On-Shore Wind Turbines


Learning Rates for Solar PV

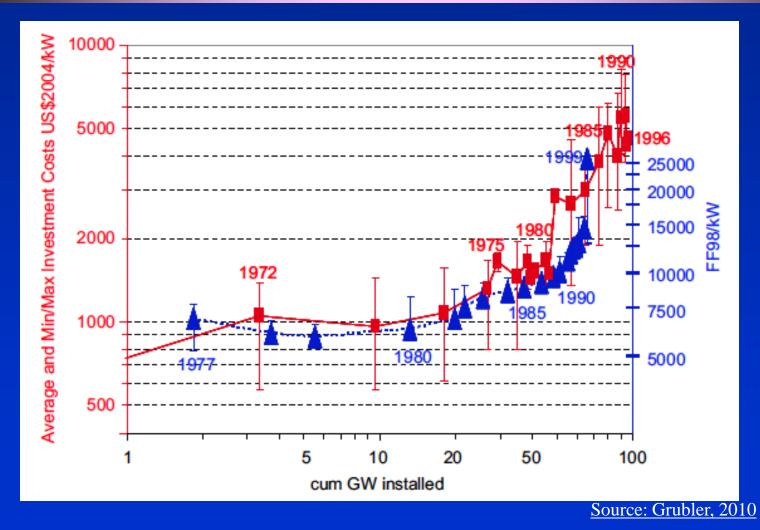
Histogram for Solar PV



Examples of One-Factor Learning Curves for Power Plant Components



Examples of reported capital cost learning rates for natural gas-fired plants


Natural Gas Turbine. Dependent Variable: \$/kW

NGCC/GTCC. Dependent Variable: \$/kW

Reported Cost Trends for U.S. and French Nuclear Plants

Two-Factor Learning Curves

Model form:
$$C_i = a_i (x_i^{-b_{LBD}}) (RD_i^{-b_{LBR}})$$

where:

- C_i = unit cost of technology
- x_i = cumulative adoption of technology *i*
- RD_i = cumulative R&D investment or knowledge stock for *i*
- b_{LBD} = learning-by-doing parameter

 b_{LBR} = learning-by-researching parameter

 a_i = unit cost at unit cumulative capacity and knowledge stock for *I*

These models suggest that R&D expenditures contribute significantly to cost reductions; but ...

Data limitations have limited the practical applications of this two-factor model

Range of Technology Learning Rates from the Literature Review

Technology	Number of studies reviewed	Number of studies with one factor	Number of studies with two factors	Range of learning rates for "learning by doing" (LBD)	Range of rates for "learning by researching" (LBR)	Years covered across all studies
Coal						
PC	2	2	0	5.6% to 12%		1902-2006
IGCC	1	1	0	2.5% to 7.6%		(projections)
Natural Gas	8	6	2	0.65% to 5.3%	2.4% to 17.7%	1980-1998
Nuclear	4	4	0	<0% to 6%		1975-1993
Wind (on-shore)	35	29	6	-3% to 32%	10% to 23.8%	1980-2010
Solar PV	23	22	1	10% to 53%	10%	1959-2001
BioPower						
Biomass production	4	4	0	12% to 45%		1971-2006
BioPower generation	7	7	0	0% to 24%		1976-2005
Geothermal power	3	0	0			1980-2005
Hydropower	3	0	2	0.5% to 11.4%	2.6% to 20.6%	1980-2001

Conclusions about Learning Rates

- Historical experience indicates that the real cost of most power generation technologies has declined over time.
- Most analytical models of such "learning" relate changes in the unit capital cost of a technology to cumulative installed capacity in a region (accounting for assumed "spillover" effects). Some models relate the unit cost of generation to cumulative electricity production.
- Our literature review reveals a wide range in the learning rates from these "one-factor" models. In general we found:
 - Largest rates are for **renewable** energy sources (esp. wind and PV)
 - Smaller learning rates for **fossil fuel** plant types
 - Mostly negative rates for existing **nuclear** plants

Learning Rate Conclusions (con't.)

- More complex models also have been proposed to explain the "learning" phenomenon in terms of additional factors, such as expenditures on R&D
- Alternative formulations of one-factor models also have been proposed to more realistically model the "shape" of historical experience for some power plant technologies (e.g., an S-shaped learning curve).
- In general, data limitations severely limit the ability to test and validate alternative models except in limited situations
- Given the large uncertainties, energy-economic models used for planning and policy analysis should explore a wide range of cost projection models to seek robust conclusions

Endogenous learning in large-scale energy models

We Prepared Brief Reviews of Seven Energy-Economic Models

Model	MESSAGE						
Modeling Type	Optimization						
Geographic Scope	Global						
Data Sources	Rao, Keppo, and Riahi (Rao et al. 2006)						
Type of learning	Default is exogenous (AEEI). Endogenous learning - single factor and constant learning rate is applied in some						
Type of learning	studies						
Technology	A total of 18 technologies are assumed to have ETL. Learning rates range from 0-15%. Exogenous learning rates						
representation/details	of 3-5% are assumed according to the B2 scenario for the other technologies.						
	Spillover across tech. 'technology clusters' has been applied in several modeling approaches (Seebregts et al.						
Cluster learning	(Seebregts et al. 2000); Riahi et al. (Riahi et al. 2005)). Technological spillovers can occur within a cluster (for						
Cluster learning	example: carbon capture technologies, centralized and decentralized solar PV) but not from outside the cluster						
	(for example: improvements in the semi-conductor industry).						
	Spillover across regions. The learning process for technology improvements is assumed to take place on a global						
Spillover	scale. Although this might not necessarily be consistent with the existence of trade barriers, regional economic						
	blocks or the importance of localized learning						
	MESSAGE and MACRO are linked iteratively to include the impact of policies on energy costs, GDP and on						
	energy demand. MACRO, a top-down macroeconomic equilibrium model captures capital stock, available labor,						
MACRO	and energy inputs determine the total output of an economy according to a nested constant elasticity of						
MACKO	substitution (CES) production function. The linking of a bottom-up technology-rich model and a top-down						
	macroeconomic model results in a fully consistent evolution of energy demand quantities, prices, and						
	macroeconomic indicators (such as GDP, investments and savings).						
	1. The existence of technological learning while reducing overall energy system costs becomes particularly						
	important in the context of a long-term climate policy. 2. Spillovers across technologies and regions due to						
Key insights	learning results in increased upfront investments and hence lower costs of carbon free technologies, thus resulting						
	in technology deployment and emissions reductions, especially in developing countries.3. Learning and spillover						
	effects can lead to technologically advanced cost-effective global energy transition pathways. 4. Earlier studies						
	using the MESSAGE model (Roehrl and Riahi (Roehrl & Riahi 2000); Nakicenovic and Riahi (Nakicenovic &						
	Riahi 2001)) have shown that alternative parameterizations of technological change have significant implications						
	for the technology portfolio as well as associated costs.						

	Study	Model	ETC channel	Number of production sectors	Number of regions	Major results (impact of ETC)	Comments	Focus of analysis	
	Bosetti <i>et</i> al., 2006	FEEM- RICE	LBD	1	8	An index of energy technological change increases elasticity of substitution. Learning-by- doing in abatement and R&D investments raise the		Experimen tal model exploring high inertia.	
plus a						index. Energy technological change explicitly decreases carbon intensity.			
summary of	Crassous <i>et</i> al., 2006	IMACLI M-R GCE	R&D and LBD	1	5	Cumulative investments drive energy efficiency. Fuel prices drive energy efficiency in transportation and residential sector.	Endogenou s labour productivit y, capital		
an IPCC						Learning curves for energy technologies (electricity generation).	deepening.		
review of	Edenhofer <i>et al.</i> , 2006	MIND Optimal growth	LBD	1	1	R&D investments improve energy efficiency. Factor substitution in a constant- elasticity-of-substitution (CES) production function.			
global top- down models						Carbon-free energy from backstop technologies (renewables) and CCS. Learning-by-doing for renewable energy. R&D			
down models						investments in labour productivity. Learning-by- doing in resource extraction			
with	Gerlagh, 2006	DEMET ER-1 CCS	LBD	1	1	Factor substitution in CES production. Carbon-free energy from renewables and CCS. Learning-by-doing for both and for fossil fuels.			
endogenous	Masui <i>et al</i> ., 2006	AIM/Dy namic - Global	R&D	9	6	Factor substitution in CES production. Investments in energy conservation capital		Focus on energy efficiency	
learning		Clobul				increase energy efficiency for coal, oil, gas and electricity. Carbon-free energy from backstop		with limited supply-side	
(17 studies)						technology (nuclear/renewables).		substitutio n.	
(Рорр, 2006	ENTICE -BR	R&D	1	1	Factor substitution in Cobb- Douglas production. R&D investments in energy efficiency knowledge stock. Carbon-free energy from generic backstop	R&D investment s lower price of energy		
Carnegie Mellon						technology	from backstop technology.		

Endogenous Learning Rates (%) in Several Bottom-Up Energy Models

	(a) One-factor learning curves				(b) Two-factor learning curves			
Technology	ERIS	MARKAL	MERGE -ETL	MESSAGE	ERI	S	MERG	E-ETL
			Learn	ing Mode:	LBD	LBR	LBD	LBR
Advanced coal	5	6	6	7	11	5	6	4
NG combined cycle	10	11	11	15	24	2	11	1
New nuclear	5	4	4	7	4	2	4	2
Fuel cell	18	13	19	-	19	11	19	11
Wind power	8	11	12	15	16	7	12	6
Solar PV	18	19	19	28	25	10	19	10

LBD= learning by doing; LBR= learning by researching

Source: IPCC (2007)

Learning Rates for New Generation Components in NEMS

Technology Component	Period 1 Learning Rate	Period 2 Learning Rate	Period 3 Learning Rate	Period 1 Doublings	Period 2 Doublings	Minimum Total Learning by 2025
Pulverized Coal	-	-	1%	-	-	5%
Combustion Turbine - conventional	-	-	1%	-	-	5%
Combustion Turbine - advanced	-	10%	1%	-	5	10%
HRSG ¹	-	-	1%	-	-	5%
Gasifier	-	10%	1%	-	5	10%
Carbon Capture/Sequestration	20%	10%	1%	3	5	20%
Balance of Plant - IGCC	-	-	1%	-	-	5%
Balance of Plant - Turbine	-	-	1%	-	-	5%
Balance of Plant - Combined Cycle	-	-	1%	-	-	5%
Fuel Cell	20%	10%	1%	3	5	20%
Advanced Nuclear	5%	3%	1%	3	5	10%
Fuel prep - Biomass IGCC	20%	10%	1%	3	5	20%
Distributed Generation - Base	-	5%	1%	-	5	10%
Distributed Generation - Peak	-	5%	1%	-	5	10%
Geothermal	-	8%	1%	-	5	10%
Municipal Solid Waste	-	-	1%	-	-	5%
Hydropower	-	-	1%	-	-	5%
Wind	-	-	1%	-	-	1%
Wind Offshore	20%	10%	1%	3	5	20%
Solar Thermal	20%	10%	1%	3	5	20%
Solar PV	15%	8%	1%	3	5	20%

Source: EIA (2012) Carnegie Mellon

Conclusions from Energy Models with Endogenous Learning

- Endogenous technological learning tends to reduce overall energy system costs and becomes particularly important in the context of a long-term climate policy
- Endogenous learning results in increased upfront investment costs, but lowers the overall costs of carbon-free technologies, resulting in greater technology deployment and emissions reductions, especially in developing countries.
- Spillovers across technologies and regions can lead to more cost-effective global energy transition pathways.
- Alternative parameterizations of technological change can have significant implications for the technology portfolio as well as associated costs.

Remaining tasks

Work in Progress

- Finalize the literature review (Phase I) report
- Analyze sample cost trajectories and overall results from REGEN
- Suggest alternative cost trajectories based on learning models, and assess their impact on key results from REGEN
- Prepare a brief Phase II report including recommendations for future work

rubin@cmu.edu