



### **CO2 Capture and Storage Update**

Stu Dalton (sdalton@epri.com)

Senior Government Representative - Generation

EPRI Climate Seminar - Washington DC May 17, 2012

## **Update – CO2 Capture and Storage (CCS)**

- New Ideas are out there but so far, no "Silver Bullet" technology
- Slow progress at scale but some plans are being built most tied to Enhanced Oil Recovery (EOR) Government \$
- Expensive -US and Europe both have funding issues on demonstrations
- Policy driven via different mechanisms
  - US new source performance standards
  - EU directives
  - Australian trading scheme

Policy - Finance - Technology

## Gas and Regulations Change the US CCS Outlook

- Less pressure for CCS
- No new climate legislation plus proposed NSPS favors gas
- Gas price now makes natural gas cheaper than some coal for dispatch (e.g., Central Appalachian coal)
- Coal use declines (1<sup>st</sup> Q EIA data says coal generation MWh now at 36% vs. 46% one year ago)
- CCS not needed on gas for new units so coal firing declines and gas gets built for capacity needs and renewable back-up

### LNG Prices in early 2012 (in US \$/MMBtu)

Natural Gas Overview: World LNG Prices

Federal Energy Regulatory Commission • Market Oversight • www.ferc.gov/oversight

#### World LNG Estimated April 2012 Landed Prices



Source: Waterborne Energy, Inc. Data in \$US/MMBtu

Updated: March 6, 2012





### Regulation/ policy



- In the USA the regulatory drivers are not pushing CCS for existing units (CCS not needed soon)
- Proposed NSPS for CO<sub>2</sub> means new coal will need CCS (>40% capture based on 1000 pounds/MWh gross)
- New natural gas-fired combined cycle should be able to meet this so would not need CCS under this requirement and peaking gas is exempt
- Gas is cheap therefore new fossil units are very likely to be gas

#### **Finance**

- Many large announced projects have failed to get financing
- Those projects that are going forward often have financial backing from several sources including:
  - Grants (US Clean Coal power Initiative etc)
  - Loan guarantees
  - Enhanced Oil Recovery (EOR) revenues
  - Ratepayer support (public utility commissions)
  - Shareholder support
  - Additional, non-power commodity products
  - All or several of the above are common



## **SLOW Progress - Technology**

- CCS is making some progress
- Processes are coming out of the lab and being scaled up
- Most are still sub-scale not ready to pilot
- ARPA-e and DOE NETL sponsor significant work
- EPRI has evaluated many pilots but most are not at advanced technology readiness levels (TRL's) or ready for demonstration

If it likes to catch CO2 it does not like to let go



## How are we doing on Large Scale CCS?

- The Global CCS Institute has been tracking what they call "Large Scale Integrated Projects" (LSIPs) of CCS around the world
- At the end of 2011 they were tracking 74 LSIPs
  - 15 are operating or in construction
  - They have a total capacity of 35 million CO<sub>2</sub> tons/yr
  - That is an increase of 7.6 million tons/yr since 2010
- IEA's "Blue Map" scenario will require the addition of an average of 182 million tons/yr of CCS each year over the next 24 years



# Major Coal OxyCombustion projects in Development Worldwide – End 2011

| Country             | Project         | Location                  | MW             | Technology            | Notes                                        |
|---------------------|-----------------|---------------------------|----------------|-----------------------|----------------------------------------------|
| US                  | FutureGen 2     | Meredosia, IL             | 200            | B&W, Air<br>Liquide   | FG Alliance<br>for Storage.<br>Est. S/U 2016 |
| G <del>ermany</del> | Vattenfall      | Janeschwalde              | 250 MWe        | Alstom, Linde         | S/U 2015                                     |
| Spain               | Endesa          | Compostella               | 300 MWe<br>CFB | Foster<br>Wheeler CFB | In FEED. Est<br>S/U 2016                     |
| Australia           | CS Energy       | Callide                   | 90 MWt         | IHI, Air<br>Liquide   | S/U 2011                                     |
| Korea               | KOSEP-<br>KEPCO | Yongdong<br>Power station | 125 MW         | TBD                   | S/U 2017                                     |

Only 1 under construction. Will the others follow?



## Major PC Post-Combustion Capture Projects in Development Worldwide – End 2011

| Country          | Project            | Location         | MW                       | Technology         | Notes                |
|------------------|--------------------|------------------|--------------------------|--------------------|----------------------|
| US               | NRG                | Parish, Texas    | 60                       | Fluor MEA          | CCPI 3 EOR           |
| Canada SaskPower |                    | Boundary Dam     | 100                      | Cansolv            | In construction      |
|                  | TransAlta          | Wabamun, Alberta | 125                      | TBD                | EOR & Saline         |
| Germany          | Vattenfall         | Janeschwalde     | 125                      | Chilled<br>Ammonia | On shore Saline      |
| Netherlands      | E.ON et al.        | Maasvlakte       | 250 MW of new<br>1100 MW | Amine              | Offshore gas field   |
| Poland           | PGE<br>Elektrownia | Belchatow        | 250 MW of 858 MW         | Advanced<br>Amine  | Saline reservoir     |
| Romania          | Turceni            |                  | 330                      | TBD                | Saline               |
| UK               | Scottish Power     | Longannet        | 300                      | Aker               | North Sea<br>storage |

Only 1 is under construction, will the others follow?



## **Major IGCC + CCS Projects in Development Worldwide – End 2011**

| Country   | Project         | Location     | MW<br>Net | Gasification<br>Technology     | Gas<br>turbine | Coal                      | Notes                       |
|-----------|-----------------|--------------|-----------|--------------------------------|----------------|---------------------------|-----------------------------|
| US        | HECA<br>SCS     | California   | 250       | МНІ                            | МНІ            | Western Bit<br>& Pet coke | In FEED.<br>EOR. Urea.      |
|           | Southern        | Mississippi  | 524       | Southern<br>TRIG™ Air<br>blown | Siemens        | Lignite                   | Under construction EOR      |
|           | Summit<br>Power | Texas        | 200       | Siemens                        | Siemens        | PRB                       | In Financing.<br>EOR. Urea. |
|           | Future<br>Fuels | Pennsylvania | 250       | TPRI (China)                   | TBD            | Anthracite                | Permits obtained            |
| UK        | Don<br>Valley   | Yorkshire    | 800       | Shell                          | GE             |                           | EU NER 300 candidate        |
| Australia | Wandoan         | Queensland   | 350       | GE Radiant                     | GE             | Queensland                | Pre FEED                    |

Only 1 under construction. Will the others follow?



# Carbon Pollution Standard CO<sub>2</sub> limit for Coal



- Published April 13, 2012 applies to new units. Comments through June 25
- Aimed at mid-range and base load not peaking units (exempts simple cycle CT.- 1000 pounds/MWh implies >40% removal from coal)
- Allows some early year larger emissions with higher removal in out years
- Technically possible though not at scale via CCS. Cost of power is likely increased >50% for 40% removal
- Cost makes this prohibitive if gas is well over \$2/Million Btu
- One unit (just discussed Mississippi Power Kemper County) under construction with ~ 60% CO<sub>2</sub> removal



### **CCS** for Gas



- Some of the technology may be similar so R&D for coal and screening of processes may help gas CCS.
- But... huge gas flows out of a Combustion Turbine = big absorbers for CO<sub>2</sub>
- Or CO<sub>2</sub> can be increased in the outlet of the combined cycle by recirculation of CO<sub>2</sub> in the CT – new dynamics, flows and combustion/ flow
- Cost per ton of CO<sub>2</sub> avoided or removed may be higher than for coal
- High O<sub>2</sub> loads so may cause oxidation of some sorbents (e.g., some amines) is possible
- No SO<sub>2</sub>, metals, particulate so that is easier with gas



#### **Conclusions**

- Natural gas availability is shifting power and US CCS, economics
- Technology is slowly progressing and being demonstrated
- Finance is difficult everywhere for demos and first of a kind CCS
- EOR is a help but not enough to drive CCS into use by itself
- Policy driver is for little or no new coal under the MATs and NSPS requirements

### POLICY-FINANCE-TECHNOLOGY



#### For More Information

- A "roadmap" report is available for download at no cost at <u>www.epri.com</u>
  - "Advanced Coal Power Systems with CO<sub>2</sub> Capture"
    Update 2011 EPRI report 1023468

Together...Shaping the Future of Electricity

