

EPEI ELECTRIC POWER RESEARCH INSTITUTE

The Near Future of Electric Transportation

Mark Duvall Director, Electric Transportation Global Climate Change Research Seminar May 25th, 2011

Mainstream PEV Commercialization Began December 2010

Chevrolet Volt

- Extended Range Electric Vehicle
 - (EREV A plug-in hybrid with a guaranteed electric range).
- EV Range of 25 50 miles
 - 35 mi EPA rating
- Charging: 8-9 hours at 120V, 12A

3 hours at 240V, 15A

Nissan Leaf

- Battery Electric Vehicle
- EV range of 80 100-miles
- Charging:
- 20 hours at 120V, 12A 8 hours at 240V, 15A 30 min at 400V, 150A

Status of PEV Rollout

- Nissan successfully launched the Leaf battery electric vehicle in December 2010
 - Dec: 16 deliveries CYTD: 1,025 deliveries
 - 2011 production estimated at 30,000
 - Building U.S. EV, battery plant in Smyrna, TN
- General Motors successfully launched the Chevrolet Volt Extended Range Electric Vehicle in December 2010
 - Dec: 326 deliveries CYTD: 1,703 deliveries
 - 2011 production estimate ~10,000—2012 production estimates of 60,000 to 120,000
 - 2 new Volt models announced, possibly also an SUV
- Ford announced timing for the Focus Electric and C-Max PHEV, began delivery of Transit Connect Electric
- Toyota announced timing for Prius PHEV, RAV4 EV

The Pipeline for New Models is Promising

Near-Term PEV Projections Establishing market, sustainable business case

Long-Term PEV Projections

Production volume, cost, awareness for a mainstream product

Near-Term Objectives

- Cost reductions—both vehicle and infrastructure—are critical
- Build public awareness
- Develop realistic and efficient public infrastructures
- Simplify infrastructure installation and offerings
- Migrate PEV technology to new platforms

At this point in time, nothing is more important that getting the as many great PEVs in the hands of drivers as possible

Initial Impressions of Vehicles & Infrastructure

- Impressions, not data at this point
- High proportion of Level 2
 requests
- Significant issues with multi-unit dwellings (condos, etc)
- Public infrastructure just getting started
- Probably will see increased emphasis on workplace charging

Chevrolet Volt 50-mile roundtrip commute

- Level 1 Home Charging Level 2 – Workplace Charging
- ~92% Electricity Electricity Electron Notification

Plug-In EV Owner Economics

Cost ≠ Price

- Difficult to compare early market PEVs with gasoline vehicles – PEV pricing is not yet stable
- First generation PEVs are surprisingly competitive economically
 - Cost reduction must equal, then exceed tax credits
- Comparable gasoline car fuel economy ~ 30 mpg
 - 100k mile fuel costs ~ \$13,500
 - 150k mile fuel costs ~ \$20,000

Simple 10-Year Ownership Assumption

Electricity: \$0.11/kW Gasoline: \$4.04/gal Incentives: \$7500 federal, \$5000 state (Leaf only) Level 2 Home Infrastructure = \$2000 (Leaf only)

Three Ways to Charge a PEV

120V – Level 1

Portable cordset Use any 120V outlet Up to 1.44 kW

240V – Level 2

Permanent charge station (EVSE)

Typ. 3.3 – 6.6 kW, but up to 19.2 kW

DC Fast Charging

Three 'Places' to Charge

Build Today's Infrastructure Today

- Infrastructure is expensive
 - ~ \$1500 home, \$2500+ public
- Focus on Residential
 - 95% of vehicles end day at home
 - Costs can exceed \$2200 \$2500
 - Cost and lead time minimization
- Workplace
 - 2nd priority in terms of use
- Public Charging
 - Critical vs. convenience
 - Understand DC Fast Charging
 - Long-term sustaining of infrastructure

Peak Demand

Grid Impacts

Smart Charging is the Key to Reducing Grid Impacts

- Vision By 2015, all new plug-in vehicles can communicate to the smart grid and charging is intelligently controlled
- 'Smart charging' is a compact between utility and vehicle owner
 - Low in cost and convenient for vehicle operator
 - -Minimize system impacts
- Implement with AMI, HAN, internet, telematics, etc.
- Vary time-of-day and charge power

Greenhouse Gas Emissions

- Electricity grid evolves over time
- Nationwide fleet takes time to renew itself or "turn over"
- Impact would be low in early years, but could be very high in future
- A potential 400-500 million metric ton annual reduction in GHG emissions

Annual Reduction in Greenhouse Gas Emissions From PHEV Adoption

Electricity as a Low Carbon Fuel in CA

- Marginal electricity supply is low GHG for ET
- Vehicle penetration is dominant factor
- EV range, electricity source not as significant

Fuel Production Carbon Intensity

Impacts to Energy Electricity and Petroleum

- Moderate electricity demand growth
- Capacity expansion 19 to 72 GW by 2050 nationwide (1.2 – 4.6%)
- 3-4 million barrels per day in oil savings (Medium PHEV Case, 2050)

Electricity Demand: Medium CO₂ Case

PHEVs Improve Overall Air Quality Reduced Formation of Ozone

- Air quality model simulates atmospheric chemistry and transport
- Lower NOx and VOC emissions results in less ozone formation particularly in urban areas

Change in 8-Hour Ozone Design Value (ppb) PHEV Case – Base Case

PHEVs Improve Overall Air Quality Reduced Formation of Secondary PM_{2.5}

- PM_{2.5} includes both direct emissions and secondary PM¹ formed in the atmosphere¹
- PHEVs reduce motor vehicle emissions of VOC and NOx.
- VOCs emissions from power plants are not significant
- Total annual SO₂ and NOx -10 from power plants capped by -12 federal law
- The net result of PHEVs is a notable decrease in the formation of secondary PM_{2.5}

Consumer Expectations of their Utility

Plug-In 2011 Conference and Exposition July 18-20, Raleigh, North Carolina

The vehicles are here. The choice is yours.

