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Talk Outline

I. Debates in estimating the cost and achievable potential of 
energy efficiency.

II. Using an energy-economy model to explain and assess 
cost estimates of energy efficiency and GHG abatement.

III. Using an energy-economy model to estimate 
contributions of efficiency and other GHG abatement 
options under alternative targets and policies.
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Reminder: actions and policies for 
GHG abatement

Actions by households and firms
– Energy efficiency (if using fossil fuels)
– Fuel switching (away from fossil fuels)
– Emissions capture and storage
– “The rest” (industrial processes, landfill management, 

agriculture, forestry)

--------------------------------------------------------------------
Policies by government to drive actions

– Information
– Subsidies
– Regulations - prescriptive
– Regulations - flexible (RPS, vehicle standards)
– Emissions charges (carbon tax, cap-and-trade)
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I. Debating efficiency cost curves:
Déjà vu all over again
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GHG abatement cost curve

energy efficiency dominant
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Frequent conclusion

Since energy efficiency is profitable, focus on it first.

Being profitable, it can largely be achieved with non-
compulsory information programs and subsidies (utility 
DSM), along with modest efficiency regulations.

These two assumptions have dominated real-world climate 
policy for over two decades.
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However, . . . 

While energy efficiency cost curves were already popular 30 
years ago, they long ago fell out of favor with energy-
economy modelers, who argued the curves mislead about 
costs and therefore policy implications.

Three key problematic assumptions with cost curves:
• efficiency actions assumed independent,
• markets and actors assumed homogeneous,
• technologies assumed perfect substitutes
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Issue #1
Actions assumed independent

Construction of cost curves implies that each action is completely independent of 
every other action. (extreme partial equilibrium analysis)

(1) demand-side, (2) supply-demand (price, rebound, GHG content), (3) 
structural change, income and GDP effects
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Issue #2
Market conditions and participants 

assumed homogeneous

Market evidence shows that acquisition of a more efficient or lower 
emission technology will cost X for the first 20% of the market, 
X+Y for the next 20%, X+Y+Z for the next 20%, and so on.

Reasons include:

– different age of existing capital stock and hence cost of 
replacement at a particular time (reference case efficiency)

– local differences in transaction costs – learning, acquisition, 
installation and operation (heterogeneity of market actors)
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Issue #3
Technologies assumed perfect 

substitutes

Quality of service assumed identical.

But some technologies provide (or are perceived to provide) lower quality 
service – a concern with new technologies especially (e.g., efficient light 
bulbs, transit vs personal vehicles)

Risk assumed identical.

But (1) long payback investments often higher investment risk, and (2) 
new technologies often higher failure risk.

Incorporating these risks usually causes higher “expected costs” for high 
efficiency / low emissions technologies.
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Energy-economy modelers: 
response to cost curve “issues”

Construct integrated “hybrid” energy-economy models:
– integrate energy supply with energy demand 
– integrate energy system with rest of economy 

Track technology stock turnover (possibly explicit vintages)

Estimate model behavioral parameters that explicitly or implicitly 
incorporate heterogeneous:

– time preferences of decision-makers
– non-financial values (preferences related to technology 

attributes)
– perceived and real differences in technology risk
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Typology of energy-economy 
models: 

Ideal model 

Microeconomic realism

Macro-
economic 
completeness

Technological 
explicitness

Conventional 
top-down 
model

Conventional
bottom-up 
model
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Hybrid energy-economy model: 
estimating CO2 MAC curves
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simultaneous actions at any 
point (integrated model), 
including equilibrium feedbacks

includes transactions costs, 
preferences and risks 
throughout curve
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II. Using a hybrid energy-economy model to 
explain and assess cost estimates of energy 

efficiency and GHG abatement
(from Energy Modeling Forum 25)
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CIMS hybrid energy-economy 
model: parameter estimation

CIMS micro-economic behavioral parameters
– Discrete choice surveys and probabilistic choice models to 

estimate market heterogeneity (v), technology-specific risks 
and preferences (i), and low-risk time preference (r).

Financial and intangible cost dynamics
– Technology learning from literature and neighbor effect from 

discrete choice surveys and literature.

CIMS macro-economic goods and services demand 
response

– Simple multiple regression of systems of energy service 
demand and product demand functions.

– Recent research into income effect and rebound effect of 
demand for energy services and energy-using devices.
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Example of empirical research –
the effect of greater energy 
efficiency on energy use?

direct rebound effect relates to individual services and may be 
small in many cases but large in some (air mobility)

evidence suggests 5-20%

productivity rebound effect: more generally, gains in energy 
productivity drive economic growth, spill-over to other energy 
services and foster the creation of new services (fridge => 
desk-top fridge, wine cooler, beer cooler, water cooler)

evidence uncertain, but could be extremely large
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Service cost and service demand:
UK lighting (1800 – 2000)

Year 1800 2000

GDP A A x 15

Lighting service 
cost

B B x 1/3,000

Per capita 
consumption

C C x 6,500

Energy service demand = f (GDP, service cost, other?)

Source: Fouquet and Pearson, The Energy Journal, 2006
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US data for “other” household 
devices - number

Steve Groves, SFU – 2009
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US data for “other” household 
services-devices: income or price 

effect?
Steve Groves, SFU – 2009
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Comparing CIMS and McKinsey 
methods (from EMF 25)

CIMS McKinsey

Model Type Hybrid. Conventional 
bottom-up.

Tech Explicit? Yes. Yes.

Financial Costs? Yes. Yes.

Discount Rate Node specific 
using RP & SP. 

7%

Preference 
Costs? 

Yes. Using RP 
& SP. 

No.
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Comparing CIMS and 
McKinsey – continued

CIMS McKinsey

Market 
Heterogeneity? 

Yes. 
Endogenous. 

No or 
exogenous. 

Integrated? Yes. Actions 
interdependent. 

No. Exogenous 
approximation. 

Feedback 
Effects?

Yes. Energy S-D 
and macro. 

No or 
exogenous. 

Policy 
Simulation?

Yes (e.g. 
emissions price).

No.
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Contributions to GHG 
abatement at $50/tonne CO2e:

US in 2030
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Changing CIMS 
assumptions

CIMS McKinsey

Tech Explicit? Yes. Yes.

Financial Costs? Yes. Yes.

Discount Rate Node specific 
using RP & SP. 
7%

7%

Preference 
Costs? 

Yes. Using RP 
& SP. No.

No.
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Changing CIMS 
assumptions – continued 

CIMS McKinsey

Market 
Heterogeneity? 

Yes. 
Endogenous. 

No or 
exogenous. 

Integrated? Yes. Actions 
interdependent. 

No. Exogenous 
approximation. 

Feedback 
Effects?

Yes. Energy S-D 
and macro. 
Partly disabled.

No or 
exogenous. 
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GHG abatement cost curves:
US 2030
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Contributions to GHG abatement
at $50/tonne CO2e:

US in 2030
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III. An energy-economy model to estimate 
efficiency and other abatement options 
under alternative targets and policies

(from Energy Modeling Forum 24)



EMF 24 Study Parameters
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 Technology Assumptions: optimistic/pessimistic
 End-use
 CCS
 Nuclear
 Wind & Solar
 Bioenergy

 Policy :
 50% Cap below 2005 levels
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Achieving 50% GHG reduction by 
2050 requires vast reduction from 

supply-side – in all scenarios
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Achieving 50% by 2050 requires 
big change in vehicle stocks

0%

20%

40%

60%

80%

100%

Base BAU Optimistic Pessimistic

2005 2050

100%

39%

12%
26%

Ethanol (E85)
PHEV & Electric
HEV
Conventional (ICE)



05/2011 Jaccard-Simon Fraser University 33

Achieving 50% causes increased 
electricity use which offsets 

increased end-use efficiency
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Using a hybrid model, we find higher costs for energy efficiency 
and thus also for GHG abatement than McKinsey-type bottom-
up analysis.

The main reason is that hybrid models incorporate parameters 
reflecting technology-specific risk and quality of service into their 
estimates of technology costs.

When analysis includes productivity rebound effects that offset in 
part efficiency gains, then fuel switching and perhaps carbon 
capture must play a large role in GHG abatement.

Our policies should reflect this now. Energy efficiency policies must 
be accompanied by GHG pricing and/or regulations affecting 
technology or fuel choices.

Conclusion
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As an economist, I should be explaining how emissions pricing 
saves money relative to sector-specific, technology-specific, and 
fuel-specific GHG emissions regulations.

However, when the needed reduction is 50% by mid-century (80% 
if scientists are correct and our politicians sincere) it may not 
matter if we rely mostly on regulations. Emissions must fall 
dramatically from supply-side and demand-side.

If, instead, we insist on emissions pricing, and never achieve this 
because of political constraints, then our approach will help 
ensure a horrendous environmental outcome – with huge costs 
for all.

Conclusion continued
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Extra slides



Technologist’s profitable efficiency

Greater technical energy efficiency

If environmental
externalities

were internalized
?

Baseline efficiency trend

Economist’s profitable efficiency

Passage of time

Address real market failures:
•Information as public good,
•Average cost pricing of utilities

Economist’s critique:
•Technologies differ with respect to risk,
•Technologies differ with respect to quality
•Firms & consumers heterogeneous

Technologist’s explanation:
•Market barriers: financing, info,
split-incentive, capacity
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Technology and preference 
dynamics: CIMS

Declining capital cost function
– Links a technology’s financial cost in future periods to its 

cumulative production 
– Reflects economies-of-learning and economies-of-scale
– Parameters taken from literature

Declining intangible cost function
– Links the intangible costs of a technology in a given period 

with its market share in the previous period
– Reflects improved availability of information and decreased 

perceptions of risk – the “neighbor effect”
– Mostly estimated from our own empirical studies
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McKinsey vs. CIMS EMF 25 
(US – 2030)
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CIMS – technology share 
algorithm for new stocks
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• Discount rate (r) - time preference, 
option value, risk premium

• Intangible cost (i) - costs and benefits 
additional to simple financial costs

• Market heterogeneity (v) - different 
consumers and businesses have different 
preferences and perceptions, and may 
experience different costs in different 
locations.
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Discrete choice models to 
estimate r, i and v in CIMS
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v = ordinary least squares to estimate value for which predictions from 
CIMS are consistent with those from the DCM model. Depends on size 
of error terms relative to values of beta parameters. 

jECOCCCjj eECOCCCU ++++= ββββ
Standard discrete choice model for technology choice surveys

Survey / 
Observation

Empirical
Model (DCM)

CIMS’ r,
i and v
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CIMS technology learning and 
neighbor effect functions

–capital stock turnover and technology-specific progress ratios for 
capital cost or life cycle cost CC = f(cumulative production)

–technology-specific intangible cost function related to market share 
as in product market forecasting – key technological areas
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EMF 25: simulating US energy 
and GHG policies
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