Science Update: Understanding the IPCC Findings

Lee R. Kump

"Most of the observed increase in globally averaged temperatures since the mid-20th century is very likely due to the observed increase in anthropogenic greenhouse gas concentrations"

VERNMENTAL PANEL ON CLIMATE CHANGE

Intergovernmental Panel on Climate Change (United Nations), Fourth Assessment Report, 2007

"Anthropogenic warming could lead to some impacts that are abrupt or irreversible, depending on the rate or magnitude of climate change"

IPCC Chairman Pachauri Speech to World Economic Forum, Davos, January 2008

OVERNMENTAL PANEL ON CLIMATE CHANGE

"As global average temperature increases exceed 3.5°C, model projections suggest significant extinctions (40-70% of species assessed) around the globe"

IPCC Chairman Pachauri Speech to World Economic Forum, Davos, January 2008

OVERNMENTAL PANEL ON CLIMATE CHANGE

Overview of Talk

- What is the greenhouse effect?
- Why the fuss over CO₂when water vapor does so much more?
- What do we know about high CO₂ worlds?
- What else is happening to the climate system?
- Can we trust models? What do they predict?
- What's ocean acidification?
- Where are the critical gaps in scientific understanding needed for policy decisions?

Discovery of the Greenhouse Effect

Joseph Fourier (1827)

Recognized that gases in the atmosphere might trap the heat received from the Sun.

James Tyndall (1859)

Careful laboratory experiments demonstrated that several gases could trap infrared radiation. The most important was simple water vapor. Also effective was carbon dioxide, although in the atmosphere the gas is only a few parts in ten thousand.

Svante Arrhenius (1896)

Performed numerical calculations that suggested that doubling the amount of carbon dioxide in the atmosphere could raise global mean surface temperatures by 5-6°C.

Guy Callendar (1939)

Argued that rising levels of carbon dioxide were responsible for measurable increases in Earth surface temperatures. Estimated that doubling the amount of CO_2 in the atmosphere could raise global mean surface temperatures by 2°C.

What is the "Greenhouse Effect"?

3 Heat radiating from Earth encounters greenhouse gas molecules in the atmosphere, and is absorbed. The atmosphere warms, and as a result, it too radiates heat. Some of this heat is radiated out into space, but the rest is radiated back to the Earth's surface. This extra energy warms Earth even more than the initial solar energy. In previous eras, the energy radiated to space more nearly balanced the solar energy absorbed by Earth. Currently however, Earth is radiating less radiation to space than it is receiving from the sun because of the recent addition of greenhouse gases to the atmosphere. As a result, the planet is warming. Atmosphere radiates heat into space

Earth's surface radiates more heat to the atmosphere than it is receiving from the sun because of greenhouse gases —

NATURAL GREENHOUSE EFFECT

Anthropogenic GREENHOUSE EFFECT

Anthropogenic CO₂ forces climate; water amplifies

Historical CO₂ measurements

Began in 1958

We know this is anthropogenic

Prehistoric Greenhouse Gas Measurements

Polar temperatures for the last 65 million years

Zachos et al. (2001, Science 292: 686-693)

Historical Trends

Glacial Retreat

Glacial Retreat

20th Century Changes in Ice Cover

Ice Sheet Collapse

Atmospheric *p*CO₂

Should We Trust Climate Models?

boxes

COMPLEX CLIMATE MODELLING

Should We Trust Climate Models? Natural Factors

Should We Trust Climate Models? Natural Factors

PREDICTED/OBSERVED CLIMATE TRENDS 2 Comparison of the average of Predicted temperature trends from models, taking into account the impacts of the model results in graph 1 to natural forces alone actual observations 1.0 1.0 Observed recorded Climate model annual 0.5 0.5 predictions temperatures TEMPERATURE ANOMALY (°C) EMPERATURE ANOMALY (°C) 0.0 0.0 Average -0.5-0.5 predicted Average annual predicted temperatures annual temperatures -1.0 -1.01900 1920 1940 1960 1980 2000 1900 1920 1940 1960 1980 2000 YEAR YEAR

Should We Trust Climate Models? Human Factors

Industrial pollutants

The smokestacks of factories such as this paper mill spew greenhouse gases in the form of carbon dioxide and nitrous oxide. They also produce significant amounts of aerosol-forming sulfur dioxide.

Should We Trust Climate Models?

Natural and Human Factors

Projected Future Warming

Live coral coverage in Florida Keys

decreasing at 10% per decade . . . why?

This large star coral (*Montastrea annularis*) was being attacked by black band disease in 1988 and was mostly dead by 1998. (Courtesy E. Shinn)

A number of stressors, including warming, nutrients, disease, but also CO₂

Fossil Fuel CO₂Uptake by Ocean

Doney (2006)

Carbon Chemistry in Seawater

$\text{CO}_2 + \text{co}_3^2 + \text{H}_2\text{O} \rightarrow 2 \text{HCO}_3^-$

Carbon dioxide reacts with carbonate in water to form bicarbonate

Observations at the Hawaii Ocean Times Series Station

Chris Langdon

Effect of atmospheric CO₂ on community calcification (Biosphere 2)

Chris Langdon

To stabilize atmospheric CO2 levels at 450 ppm, fossil fuel use needs to peak by 2020

With atmospheric CO₂ levels at 450 ppm, global temperature increases by about 2°C and sea level rises by half a meter or more

Stabilization?

realclimate.org

Conclusions

- Greenhouse effect is real, always had it, just intensifying it
- Atmospheric CO₂ and temperature have co-varied through Earth history
- Climate models best tool we have to project future climate; key gaps: nonlinearities, downscaling
- Tipping point behavior a real risk, not clear where tipping points reside. Key observations?
- Ocean acidification likely consequence of CO₂ buildup.
 Need *in situ* experiments.