

CO₂ Capture and Storage

2008 EPRI Global Climate Change Research Seminar

May 21-22 Washington DC

Stuart Dalton

Director, Environment/Generation

Preparing for Carbon Constraints

Multiple Challenges Requiring Concurrent Resolution.

Background On Cost

- EPRI has redone capital cost and O&M estimates for Integrated Gasification Combined Cycle with Capture of CO₂ (IGCC/CCS) and Pulverized Fuel with CCS (PC/CCS)
- Huge escalation in past few years world competition
- Options are needed
- New Federal , Private RD&D should reduce costs and improve efficiency
- Accelerated EPRI / industry funding for projects both supporting DOE projects and separate RD&D.

IHS/CERA Power Capital Costs Index

"North American Power Construction Costs Rise 27% in 12 Months" "Continuing Cost Pressures Likely to Bring Delays and Postponements"

Source: IHS/CERA Press Release 2/14/08

Capital Cost Estimates in Press Announcements and Submissions to PUCs in 2007–08—All costs are higher, more than would be predicted from indices (e.g., CEPCI)

Owner	Name/Location	Net MW	Technology/ Coal	Estimate Date	Reported Capital \$ Million	Reported Capital \$/kW	Notes/Status
AEP/ Swepco	Hempstead, AK	600	SCPC/PRB	Dec. 2006	1680	2800	CPCN issued
Southern Co.	Kemper County, MS	560	Air IGCC/ Lignite	Dec. 2006	1800	3000	FEED in progress
Duke	Cliffside, NC	800	SCPC/ Bit	May 2007	2400	3000	Permitted
Duke	Edwardsport, IN	630	IGCC/ Bit	May 2008	2350 In Service	3730	Permitted
AEP	Mountaineer, WV	630	IGCC/Bit	June 2007	2230	3545	Permit in Review
Tampa Electric	Polk County, FL	630	IGCC/Bit	July 2007	1613 (all \$?) 2013 Serv	2554/ 3185	Shelved; now NGCC
Sunflower	Holcomb, KS	2 x 700	SCPC/PRB	Sept. 2007	3600	2572	Permit denied
Am. Muni. Power	Meigs County, OH	1000	SCPC/Bit & PRB	Jan. 2008	2900/3300	2900/3300	
Tenaska	Sweetwater County, TX	600	SCPC + CCS/PRB	Feb. 2008	3000	5000	

With Current Technology CO₂ Capture Costly No Clear Winners in Current Designs

CO₂ Capture Can Be Done Today, But....

- As last slides shows It would increase the cost of electric power from coal significantly and there are no clear winners for all coals
- EPRI's current estimates
 - Cost of power from a pulverized coal plant with post-combustion capture would be 60-80% higher
 - Cost of power from an IGCC with pre-combustion capture would be 40-50% higher (but IGCCs start out with a higher cost, so won't necessarily be cheapest option with CCS)
 - Cost of oxy-combustion more difficult to estimate with certainty at this stage of development but overall cost of power probably similar to PC + post combustion capture
- Luckily, EPRI also estimates that with a concerted RD&D effort, the cost impact of CCS should decrease dramatically

Cost & Performance Penalties for CO₂ Capture (based on retrofit of existing PC or IGCC plant – today's technolgy)

EPRI Estimates of the Benefits and Timing of RD&D in Gasification of Coal

© 2007 Electric Power Research Institute, Inc. All rights reserved

EPRI Estimates of the Benefits and Timing of RD&D in Combustion

Pulverized Coal With CO₂ Capture – Commercial Technology Status

\$/ton Cost of Capture Is High – Need More Economical Processes

1.7 MWe CO₂ Capture R&D Pilot Plant

Pleasant Prairie Power Plant, Pleasant Prairie, Wis.

Dedicated February 2008

Pilot Project Team Members

- ELECTRIC POWER RESEARCH INSTITUTE
- Partial project funding with support of >35 collaborative funders
- Pilot testing
- Performance/economic evaluation

ALSTOM

- Partial project funding
- Pilot plant owner
- Responsible for:
 - Design
 - Construction
 - Operation
 - Maintenance
 - Demolition

we energies_.

- Partial project funding
- Host Site
- Plant interface, permitting, utilities

Chilled Ammonia Pilot Plant

Post-combustion CO₂ Capture with Storage – Expected Major Contributor to CO₂ Reduction

Two capture processes

- (1) Chilled ammonia (2010-2014)
 - AEP Mountaineer
- (2) Different capture process (2011-2015)
 - DOE SECARB (SSEB)
 - Southern Co. plant (early FGD)

Value

- Reduce risk of facing CO₂ limits with:
 - Only 60-80% △COE technology
 - Storage not accepted
- Have time to learn in low-risk environment
- Demonstrate permitting for injection, MMV
- Technologies ready (or nearly ready) for scale-up
- Early storage tests on anthropogenic CO₂

We Energies Pilot Is Only 1st Step

Goals – Affordable, Energy Efficient, Accepted

Mg/Nm3	NOx	РМ	SO ₂	SO ₃	Hg
Current	86	14	184	-	-
NZE	12	1	7	< 1ppm	<0.1µg/Nm³

Retrofit Required...What Plant Modifications are Required?

- For the PC plant to accommodate CO₂ capture from an MEA process, the following modifications to the plant are required:
 - Ability to extract significant quantities of LP steam
 - Ability to extract IP steam intermittently for MEA reclaiming
 - Ability to receive significant quantities of hot condensate return
 - Ability to supply large increase in cooling water load to meet PC demands
 - Ability to handle increase in electrical distribution capacity to meet large PCC power demands
 - Ability to reroute flue gas ducting to handle the flue gas to, and from, the PCC

Plot Plan for USC PC Power Plant with Post-Combustion CO₂ Capture

Design Considerations for CO₂ Capture Report

- Version 1 published in December 2007
- Outlines key aspects that could be considered in new-build coal plant design to ease future transition to CO₂ capture mode
- Version 1 currently covers
 - Post-combustion capture
 - IGCC
- Expand to include:
 - Steam turbine modifications
 - Oxy-fuel
 - Chilled ammonia
 - Process X?
- Input derived from existing (IEA), ongoing (Nexant, FWI), and future studies
- Incorporated into Advanced PC Design Guideline and UDBS for IGCC

Showcase: Accelerate CO₂ Capture Development

The Problem:

- No commercially available postcombustion capture systems available
- Near-commercial options costly; \$\$\$ and BTUs

The Response:

- Aggressively seek and propel dramatic improvements
- TI Showcase Project: *identify the most promising emerging post-combustion carbon capture technologies and assist in their development to accelerate their time to market*.

Read more about CO₂ Capture and Storage in the Spring 2007 issue of the EPRI Journal

EPRI Found Many Process Being Developed for Post-Combustion CO₂ Capture

Report #1012796 (30 processes, 20 more since report [2/07])

Few Approach Goal of < 10% Energy Penalty, < 20% COE Increase

Technologies in Database

Absorption, Liquid

- MHI, KS-1
- CAP, Chilled Ammonia
- CANSOLV
- "7/2" MEA & PZ*
- CASTOR
- IFP, Dual Phase*
- Econamine FG+
- ECO2
- Ionic Liquids, Notre Dame
- Sargas
- SkyMine
- AWL*
- WowClean*
- Ionic Liquids, U. S. Carolina
- MEA:MDEA
- RITE -- COCS Solvent
- GRT*
- Immobilized Activator*
- Enzyme Catalysis*
- AEEA
- HTC PurEnergy*
- InnoSepra*
- CarbonTrap*
- TNO CASTOR2*
- JustCatch*

Absorption, Solid

- CO₂ Wheel
- RTI
- Hyperbranched Polyamine*
- Polyethyleneimine (PEI)*
- Amine on inert support*

Adsorption

- Metal Organic Frameworks
- Advanced Mesoporous Materials
- Heavy Reflux PSA*
- CO2CRC Adsorbent
- U. Akron

Biological Fixation

- Carbon Capture Corp.*
- GreenFuel
- CO2 Solutions
- GSCleanTech*
- Conc. Solar Photoreactor
- Multiple New Algae Energy Systems*
 - * New since publication of 1012796

Membrane, Active

- MTR
- RITE, Cardo polyimide
- Tetramer Technologies*
- Poly(Ionic Liquid) Membrane

Membrane, Support

- Carbozyme
- Coral
- Kvaerner Membrane Contactor

Cryogenic

- CO2 Frosting
- Enecogen*

What Could We Do With CO₂?

- Saline reservoirs
 - 100's yr capacity
 - Little experience
- Economical, but lesser capacity options
 - Depleted oil and gas reservoirs/enhanced oil recovery
 - Unmineable coal beds/enhanced coalbed methane recovery
- Deep ocean injection not acceptable today
- Mineralization highly uncertain
- No use for large amounts

Courtesy of Peter Cook, CO2CRC

Storage in Saline Reservoirs Likely Choice

DOE Regional Carbon Sequestration Partnerships

Phase 1: Data collection

Phase 2: Small pilots

- 22 Geologic Injection Tests
 - 8 EOR/Saline
 - 6 Saline reservoirs
 - 8 ECBM/EGR
- EPRI involved in three saline

Phase 3: Demonstrations

 Several possibilities for EPRI involvement

DOE Phase 3 Update

• WESTCARB

- Original focus on BP Carson project, changed to Clean Energy Systems (CES)
- 500k t/y for 4 years starting in 2010
- SECARB
 - Two part injection into same saline reservoir in two geologically separate locations
 - Cranfield: Purchased CO₂ @ 1Mt/y for 1.5 y
 - Anthropogenic test: Inject 100-250 kt/y from a CO₂ capture pilot located at a Southern Company site

RD&D Funding Needs for Advanced Coal Power Generation Technologies with CO₂ Capture

(Reference Sept 7,2007 Testimony S Dalton House Select Comm. on Energy Independence & Global Warming)

	2008– 2012	2013– 2017	2018– 2022	2023– 2027	2028– 2032
Total Estimated RD&D Funding Needs (Public + Private Sectors)	\$830M/yr	\$800M/yr	\$800M/yr	\$620M/yr	\$400M/yr
Advanced Combustion, CO ₂ Capture	25%	25%	40%		80%
Integrated Gasification Combined Cycle (IGCC), CO ₂ Capture	50%	50%	40%	80%	
CO ₂ Storage	25%	25%	20%	20%	20%

Together...Shaping the Future of Electricity

Image from NASA Visible Earth