

Understanding Major Analyses of H.R. 2454, American Clean Energy and Security Act of 2009

EPRI Global Climate Program July 22, 2009

Announcements

Please put your phones on mute unless you have questions
Please raise questions at any time
Please do not put phones on hold

Webcast Recording Notice

- We are recording this webcast and its audio discussion.
- Your continuing participation in this webcast provides consent to the recording.
- If you do not consent, you should end your participation.
- We plan to make this recording available to members-only.

Background

- May 2008, we held a Capitol Hill workshop to understand cost estimates of Lieberman-Warner
 - Estimates from 6 modeling teams + CBO
 - Differences due primarily to different baselines and different electric sector technology cost and deployment assumptions
 - Presentations and webcast available at EPRI Newsroom archive:

http://my.epri.com/portal/server.pt?open=512&objID=342&PageID=223366&cached=true&mode=2

Today's Webcast

- Is for members only (Climate Programs 102 and 103)
- Will help begin to understand the key assumptions that drive differences in analyses released to date
 - Unlike Lieberman-Warner, differences in \$/ton cost estimates are driven assumptions about the availability of international offsets
 - If offsets are limited, then the electric sector assumptions again become critical
- Is likely the beginning of a discussion many more public analyses are on the way

Please participate actively!

What important questions/communication issues do you see?

Webcast Overview

Introduction to public estimates Tom Wilson

Private NEMS analysis
 Vic Niemeyer

• Exploring EPA offset assumptions Francisco de la Chesnaye

Examining household impacts Tom Wilson

 Thanks to Delavane Diaz and Adam Diamant for their help with the presentation

H.R. 2454: Combination of Incentives and Mandates Plus Economy-wide Cap & Trade Program

- Titles I & II deal with clean energy and energy efficiency
 - CERES combines renewable electricity and energy efficiency standards
 - Energy efficiency programs, CCS and other technology programs
- Title III establishes a cap & trade system for greenhouse gas emissions
 - Cap decreases over time so that emissions are 17% below 2005 levels by 2020,
 42% below by 2030, and 83% below by 2050
 - Unlimited banking of allowances, restrictions on borrowing
 - Strategic Allowance Reserve (1-3% of allowances withheld)
 - Offsets limited to 2,000 million metric tons CO2 equivalent (MtCO2 e) per year (actually less)
 - Supplemental reductions from reduced deforestation through allowance setasides
- Title IV addresses competitiveness issues / transition to a clean energy economy
 - Creates an output-based allowance allocation mechanism based on H.R. 7146 (Inslee-Doyle bill)

Waxman-Markey Passed House 219-212 on June 26th: Seeks to Cut CO₂ Emissions Well Below Historic Levels

Emission Reductions Under Cap-and-Trade Proposals in the 111th Congress, 2005-2050 June 25, 2009

Generous Offset Provisions Could Loosen Emissions Cap (Adapted from MIT's Denny Ellerman)

The Effect of Offsets: Practically Possible

Very Limited Number of Public Analyses to Date

Selected Analyses

- EPA macroeconomic analyses with ADAGE and IGEM; electric sector analysis for "core" policy scenario with IPM
- CBO input/output analysis that depends on EPA \$/ton permit costs
- CRA (Black Chamber of Commerce)
- Heritage Foundation macroeconomic analysis using IHS Global Insight
- MIT and others generic analysis of cumulative allowable emissions from 2012 to 2050
 - 167 billion metric tons == linear reductions to 80% below 2008 level
 - 203 billion metric tons == linear reductions to 50% below 2008 level

Analyses to date focus primarily on Title III cap-and-trade provisions

Heritage Foundation provides limited results/assumptions (e.g., no estimate of \$/ton allowance price reports); difficult to interpret

Public Estimates of Waxman-Markey Allowance Prices

Public Estimates of Waxman-Markey Allowance Prices

EPA's Analysis Shows Access to International Offsets is Critical for Allowance Cost Containment

Without international offsets, allowance price would increase 89% relative to H.R. 2454

Where do Emission Reductions Come From? EPA HR 2454 Core Case, June 23

Where do Emission Reductions Come From? Offsets (primarily international) and Electric Sector

When Domestic Capped Reductions Have to be Made, Capital Costs for Low-carbon Generation are Important

Overnight Capital Cost for 2020 Build

EPA Analyses of Reference and Policy Cases Estimate Limited Electric Capacity Additions through 2025

Note: EPA did not run their electric sector model for a case with limited international offsets

Electric Sector Generation Mix Largely Unchanged in EPA Core Analysis

Modeled Electricity Generation Mix

Estimated Allowance Prices for Waxman-Markey Including EPRI/PacifiCorp NEMS Analyses

Private NEMS Analysis for PacifiCorp

- Preliminary NEMS results courtesy of PacifiCorp, a subsidiary of MidAmerican Energy Holdings Company
- NEMS and AEO 2009 publicly available from EIA
- EPRI applied model to represent Waxman-Markey on behalf of PacifiCorp
 - PacifiCorp assumptions on power plant costs (2008)
 - PacifiCorp/EPRI team set scenarios

NEMS Analysis Highlights Critical Role of Offset Availability Assumptions

- Based on AEO 2009 updated w. Stimulus Package and revised CAFE standards
- No link to macro economy
- Best-effort representation of H.R.2454 (E&C version)
 - Cap-and-trade program
 - RES and Energy Efficiency provisions (15% + 5%)
- Reference Case has full 2b tons of offsets availability
- Three offsets sensitivity cases phase-in offsets from zero
 - Case 1 "Plentiful" 2 Billion Tons by 2030
 - Case 2 "Scarce" 1 Billion Tons by 2030
 - Case 3 "Very Scarce" half Billion Tons by 2030

Offset Sensitivity Cases

Scenario Offset Availabilities

NEMS Results Highlight Critical Importance of Offset Availability for Cost Containment

Results Also Show Electric Sector Providing Over 90% of Economy's Total CO₂ Abatement

Economy-Wide and Electric Sector CO2 Emissions

Electric Consumers See Rate Increases (partly offset by allowance transfers – not shown)

Average Electricity Price

Generation By Fuel Type – HR 2454 with Full Offsets

Generation By Fuel Type - Ref Offsets

Generation By Fuel Type – Offsets Limited to 1B (mostly burns more gas)

Generation By Fuel Type - Case 2

Cumulative Capacity Additions – HR 2454 w Full Offsets

Cumu. Capacity Addition - Ref Offsets

Cumulative Capacity Additions – Offsets Limited to 1B

Cumu. Capacity Addition - Case 2

Exploring EPA's Offset Assumptions

Forest Management & Afforestation are the Largest Sources of Domestic Offsets

Source: Appendix to EPA Preliminary Analysis of the Waxman-Markey Discussion Draft, 4/20/09, P. 60

Source: EPA Analysis of H.R. 2454 6/23/09, P. 23.

EPA's estimates are based upon Texas A&M's FASOM model; Recent EPRI re-analysis with FASOM suggests lower domestic offset availability

EPA Estimates of International Offsets are Based Upon Three Primary Sources

- Forestry emission reductions afforestation, forest management, and avoided deforestation -- are based upon analyses using Brent Sohngen's (Ohio State University) Global Timber Model (GTM)
- Energy sector CO2 reductions are estimated for an international climate policy scenario using Jae Edmond's MiniCAM model
- Non-CO2 emission reductions are based upon bottom-up studies of each of the relevant sectors

Where Do Offsets Come From? EPRI Estimate of **EPA Supply of International Offsets in 2010***

2010 Low-Middle Income Country MACs

Where Do Offsets Come From? EPRI Estimate of **EPA Supply of International Offsets in 2030***

2030 Low-Middle Income Country MACs

Critical Weaknesses in Committee Defined Scenarios: Potential Availability of Offsets is Overestimated

International energy CO₂ offset availability depends critically upon the international climate policy scenario

- EPA offset dataset based upon
 - Group 1 countries (Kyoto group less Russia) follow an allowance path that is falling gradually from the simulated Kyoto emissions levels in 2012 to 50% below 1990 in 2050.
 - Group 2 countries (rest of world) adopt a policy beginning in 2025 that returns each to 2015 emissions levels through 2034, and then returns and maintains them at 2000 emissions levels from 2035 to 2050.
- G8 has stated a much stronger position:
 - "the G8 Leaders agreed to reduce their emissions 80% or more by 2050 as its share of a global goal to lower emissions 50% by 2050, acknowledging the broad scientific view that warming should be limited to no more than two degrees Celsius."
- If G8 goal is implemented, the current EPA analysis overstates availability of international energy offsets

Offset Supply Curves Have Important Limitations: They Do Not Fully Reflect Implementation Challenges

- Domestic offsets relatively small potential
 - EPA estimates only ~170MtCO₂ annually through 2020
 - Most to be derived from forest management & afforestation
 - CH₄ offsets largely not available due to new NSPS (CMM & LFG)
 - EPA may be underestimating N₂O offsets in agriculture
 - Rulemakings / protocols / methodologies will take time to develop
- International Offsets large potential, but hard to implement
 - Sectoral offsets
 - Offsets issued by an international body (e.g., CDM)
 - Reduced Emissions from Deforestation and Degradation (REDD)
 - All three categories are problematic!

Bottom Line on Offset Analysis

- Domestic offsets are expected to be very limited in the near term.
- The availability of international offsets depends on the assumption about international policies
 - the more stringent the international climate policy, the less international offsets available!
- Allowing extensive international offsets limits the ability of USonly models to give useful answers. You have to understand the international policy!
- Finally, EPRI is revisiting the EPA analyses of domestic and international forestry offsets ... results at Fall advisory meeting in Colorado

Household Cost Impacts: A Postage Stamp a Day? Waxman-Markey Household Costs Make Headlines

- EPA: "Cost to households averaged over the years 2010 to 2050 will be between \$80 and \$111"
- CRA: "Costs per household could be from \$600 to \$1600 in 2020"
- CBO: "Cost average household \$175 in higher energy costs in 2020"
 - API's Jack Gerard: "when faulty assumptions...are corrected, the annual cost to a household could be as much as \$3,300 by 2020"
- ACEEE: "Waxman-Markey could save approximately \$1,050 per household by 2020 and \$4,400 per household by 2030"
- Heritage: "Raise average family's annual energy bill by \$1,500"
- MIT's John Reilly often misrepresented 2008 analysis: Claims that climate policy will cost +\$3000 are incorrect → \$800 is correct

This year \$1000 and interest gr \$200 ps that 25 grabbe \$1500 usehold \$3300 impacts, 465 teallowance price, to Enther Carrack or defend the climate biffer

Differeces are largery driven was analytic approach and

micerpretation or anowance anocation, we will retain to this i

Household Impacts Depend Upon ...

- Estimated cost of the policy some say High, others, Low
- Particular cost estimate that is used e.g., lost consumption,
 GDP loss, cost of making reductions, size of the allowance market, bottom-up partial estimate of cost
- Assumptions about where permit revenue goes

EPA versus Heritage Foundation

- EPA assumes extensive availability of low cost offsets so costs/household are low
 - In 2020, EPA estimates policy cost to be \$28 billion
 - \$ 7 billion of reductions in sectors under the cap
 - \$ 2 billion for domestic offsets
 - \$20 billion for international offsets
 - Size of allowance market -- \$79 billion
- Heritage Foundation
 - Limits the use of offsets to 15% of cap which necessitates extensive reductions from the electric sector
 - Limits electric technology availability, which necessitates a big demand response
 - limits renewables to current state requirements
 - does not allow significant penetration of CCS
 - limits nuclear to 16GW of growth through 2050
 - Gets much higher policy cost

John Boehner (House Minority Leader) vs. John Reilly (MIT)

- Boehner used 2007 MIT estimate of the size of the allowance market and divided by households to get \$3000+
- Reilly pointed out that allowance revenue gets recycled back into the economy – directly to households, to households via businesses, or to households via government.
 - Reilly argued that the cost per household from the analysis was \$800 – the cost of making reductions

CBO Analysis – Assumptions about Where Permit Value Goes

CBO starts with a low cost based on preliminary EPA analysis -- \$28/ton CO₂ in 2020 with 83% of allowances gratis

- Rising energy costs and consequent rises in costs of goods and services that households consume -- \$110 billion or \$890/household
- Emission allowances increase household purchasing power via
 - Benefit payments
 - Rebates
 - Tax decreases or credits
 - Wages
 - Returns on investments
- CBO estimates household benefits of
 - \$28 billion to offset higher energy costs
 - \$47 billion to businesses, that will increase return on household investments
 - \$10 billion to Federal and state government for technology development and energy efficiency, which will increase wages, decrease energy bills, etc.
- Bottom line -- \$175/household

Concluding Thoughts

- We hope the webcast has helped improve your understanding of the key assumptions that drive differences in analyses released to date
 - Unlike Lieberman-Warner, differences in \$/ton cost estimates are driven assumptions about the availability of international offsets
 - If offsets are limited, then the electric sector assumptions again become critical
 - International offsets make this an international modeling issue
- Many more public analyses are on the way ... given your interest, we will plan to continue the discussion
- Hope to see you October 6-7 in Colorado!

For more information:

Tom Wilson 650-855-7928 <u>twilson@epri.com</u>

Vic Niemeyer 650-855-2744 <u>niemeyer@epri.com</u>

Francisco 202-293-6347 <u>fdelachesnaye@epri.com</u> de la Chesnaye

