
 

 

   

 

An Approach to Synthetic Future Climate Hourly Profiles 
for Power System Modeling 

Summary 
Power system modeling tools typically rely on input data in the form of 8760 timeseries to capture the intra-
annual conditions (including weather) that influence electricity supply and demand. However, nearly all global 
climate model (GCM) projections are limited to daily temporal resolution which presents a data challenge for 
incorporating their projections of future climate changes directly into power system modeling. This research 
presents an innovative approach developed by EPRI to create hourly weather timeseries for future climates at the 
local-level. A monthly quantile anomaly mapping technique is used to shift historical profiles according to the 
seasonal climatological shift being projected by an individual or ensemble of climate models. This method 
preserves important, real-world characteristics from the historical record that is otherwise missing from climate 
model output. Specifically, this approach captures important information from the historical record, such as 
locationally-specific extremes which can be missing from coarse climate projections, natural variability which isn’t 
always well represented in the climate models, and important joint correlations among physically-linked variables 
such as wind, solar, and temperature. This method has many potential applications in the power sector, where 
8760 timeseries are needed for simulation modeling, as well as for resource adequacy assessments that require 
many realizations (e.g., a sample of 100s or 1000s) to identify possible extremes for stress-testing a future year of 
interest.  

 

Introduction 
Many electricity system capacity planning and operational modeling tools are designed to use hourly timeseries, 
or profiles, as input data. These tools typically use 8760 timeseries of historical meteorological data or synthetic 
profiles (e.g., a typical meteorological year) to capture the intra-annual weather conditions that influence power 
supply and demand. Increasingly, power system planners are interested in accounting for climatic trends and 
potential extreme events in the meteorological inputs to their simulation models1. However, nearly all global 

climate model (GCM) projections are limited to 
daily temporal resolution which presents a data 
challenge for incorporating their projections of 
future changes directly into power system 
modeling. 
 
Because of this limitation, an approach that 
transforms daily climate model projections into 
hourly timeseries is needed. One such 
‘temporal downscaling’ approach is to 
interpolate between the daily values to fill in 
the missing hours, but this simple method 
could miss important diurnal fluctuations that 
have material consequences on electricity 
demand or design thresholds. Figure 1 
illustrates this interpolation approach for the 
temperature variable, which is typically 

Figure 1: Hourly temperature vs daily max and min from Jan 1-20, 1950. For 
the winter season this illustration assumes the typical pattern of daily max 
temperature at 2 pm (19z) and daily min at 6 am (11z). Gray shading 
highlights differences between the daily and hourly lines. 



 
 

 

reported from climate models with a daily mean, maximum and minimum value; most other variables are limited 
to a single daily average value. Another approach is to conduct customized dynamical downscaling of climate 
model output to produce hourly resolution data, but this is both computationally and monetarily expensive. 
Between these two approaches, there is a range of potential methods worthy of evaluation. For example, a hybrid 
approach could combine machine learning with dynamical relationships to model the gaps between daily values; 
however, this approach can be computationally expensive and requires advaned expertise.  
 
Here we present an innovative approach to develop hourly weather profiles for future climates based on the 
historical record at the local level combined with the climatological shift being projected by an individual or 
ensemble of climate models using a monthly quantile anomaly technique. This method preserves important 
information from the historical record, primarily in terms of variability, which itself isn’t well represented in the 
climate models. Climate models are also not necessarily meant to capture extreme events at the local scale as 
much as they are meant to capture long term, large-scale changes. However, variability and individual extreme 
events are critical characteristics to consider for power system reliability. Furthermore, leveraging the historical 
record preserves the physical link between variables, such as wind, solar, and temperature, and this synchronicity 
may be critical for power system modeling. This physical link is difficult to maintain when using climate model 
data because many of the needed variables are not outputs of all models, requiring the end-user to pull additional 
variables from different models. This method leverages the important characteristics of both historical and 
projection datasets as described in Table 1. Additionally, this method can overcome the limitation of only having 
a single representation of annual variability, because all historical years since 1950 can be detrended and used to 
create an extended dataset with intrinsic variability over 72 years, yielding a vast array (e.g., hundreds) of realistic 
synthetic hourly timeseries that can be used to represent a future climate. 
 
Table 1: Important characteristics from historical data and climate projections.  

Historical Data Climate Projections 

Hourly data Daily data 

Realistic variability  
- Scales of weeks, months, & years from 72 

years of historical weather (1950-2021)  

Limited variability 
- Variability is constrained to the underlying 

physical model; typically not well-captured 

Historical years only 
- Can’t represent weather extremes that 

haven’t happened 

Future years + historical simulations 
- Can capture how the climate will change 
- Can represent weather that has never happened  

Preserves physical link between variables 
- Variables are dynamically consistent since 

they come from the same dataset (ERA5) 

Projection data lacks variables at hourly resolution 
- Physical link is absent when interpolating daily 

data or using variables from different sources 

All variables available 
- i.e., 10 m & 100 m wind speeds 

Limited number of variables 
- i.e., 10 m wind speeds only 

        Important or desired characteristic  
 
 

  



 
 

 

Applications 
While this approach was specifically designed to meet the needs of power system modelers, it can be applied 
more broadly to other economic sectors or end-users in need of hourly timeseries: including those focused on risk 
analysis, system planning, load projections, line ratings, asset/engineering design standards, among others. A 
couple of power-system specific applications are shown below:  

Application example 1: Load Projection or Capacity Expansion 
▪ Need: 8760 profiles of temperature, wind, and solar for planning years through 2050 
▪ Approach: treating different GCMs/RCPs via sensitivity analysis 

Application example 2: Resource Adequacy 
▪ Need: 100s of realizations of a future year of interest to get a better understanding of the likelihood of 

specific extreme events 
▪ Approach: sample to identify dozens of possible extremes that can be used to stress test the risk model 

 
 

Data and Methods  
This approach builds upon well-established methods from the climate science community to create a novel 
method for generating synthetic hourly profiles from historical and projected climate data.  
 
For the historical source to form the underlying hourly timeseries, we use ERA5 gridded reanalysis data, from the 
European Center for Medium Range Weather Forecasting (ECMWF)2, though this method could be applied to 
other sources of hourly historical data such as station observations. ERA5 data has a spatial resolution of 31 km x 
31 km and is spatially and temporally complete, available from 1950 to present. For the projection source of future 
climatology, we use five CMIP6 climate models from the Inter-Sectoral Impact Model Intercomparison Project 
(ISI–MIP). Two climate scenarios from each model, SSP126 (lower emission scenario) and SSP370 (higher emission 
scenario), are used to create a 10-member projection sample (5 models x 2 scenarios).  
 

A high-level overview of each step is show in Figure 2 with a more detailed explanation below:  
 

 
Figure 2: High-level overview of each of the 4 steps used to create future hourly synthetic climate projections.  

Step 1: Spatial bias-correction to localize the climate projections 
Spatial bias-correction is conducted for the GCM data using historical data (ERA5) as a reference, a 
standard best practice. Spatial bias-correction helps reduce biases in the climate models by comparing 
the climate models historical simulation with the historical data. Adjustments needed to make the 
historical climate model simulation more like the historical data are quantified and then applied to the 
future projections to remove known historical biases. Bias-correction may be done using lower-level 
statistics (i.e., mean) however, quantile mapping approaches have been shown to outperform the more 
simple approaches as they are able to also correct variance in the distribution3,4. While spatial bias-
correction can remove some bias, it is not a perfect solution and can impact trends in the model and 



 
 

 

introduce inconsistencies4. While not done in this approach, limiting inconsistencies can be achieved 
through multivariate and spatially cohesive bias-correction5.   

  
Step 2: Detrend historical data using representative years with natural variability 

Removing the warming trend from the historical data creates 72 equally representative 8760s but 
preserves the natural variability from the past 72 years. The natural variability that plays out from one 
year to the next or one decade to the next is critical to capture for resource adequacy assessments.  

 
Step 3: Calculate distributional shift from the GCM historical simulation to the projection period 

Cumulative distribution functions (CDFs) are created from the historical climate model simulations (and 
projections for 2015 – 2020) for the current climate normal period (1991 – 2020) while the projected CDF 
is created for a 30-year period centered on a specific future year, like 2050 (2036 – 2065). This results in 
10 projected CDFs for each for each GCMxSSP scenario (e.g., 2036-2065). The temperature change (i.e., 
delta or anomaly) for 20 quantiles per month is calculated3. 
 

Step 4: Apply the temperature change (i.e., delta or anomaly) for each month’s quantiles to historical data 
The temperature delta for each of the 20 monthly quantiles (12 months x 20 quantiles) is applied to the 
detrended historical data (ERA5). This results in 72 years of synthetic 8760s for each climate model and 
scenario (72 years x 10 scenarios = 720 synthetic 8760s) for any future year. The number of synthetic 
8760s can easily be increased by adding more models or emissions scenarios.   

 
Results 
The resulting synthetic future climate data retains many similar properties to the historical data, but with a 

seasonally varying shift based on the climate model and scenario. This preserves realistic weather variability, but 

the resultant shift turns the data into a theoretically more plausible future scenario. For example, by shifting 2015 

to 2050, the overall 8760 profile 

is similar but warmer with the 

largest shift in the summer and 

fall and a smaller shift in the 

spring (Figure 3). However, 

there is a relatively large spread 

across the 10 future scenarios 

which includes 5 models and 2 

emissions scenarios, as would 

be expected. In fact, this 

variation across the ensemble 

of climate projection data being 

used is desired; it demonstrates 

an approach to accounting for 

uncertainty by incorporating a 

range of potential future 

profiles when possible. 

To better illustrate the shift in 

the historical data by month, 

the 8760 from 1980 for Atlanta, 

Figure 3: 2015 temperature (actual profile) compared to 2050 climate (synthetic profiles) 
shifted for each of the 5 climate models and 2 climate scenarios. The 8760s are smoothed for 
easier comparison between each synthetic profile. 



 
 

 

GA is shifted to 2050 for a single climate model and two climate scenarios (Figure 4). The higher climate scenario 

(SSP370) results in an expectantly larger shift than the lower climate scenario (SSP126), however both scenarios 

result in a significant warming of the mean from 1980 to 2050. The extremes also tend to warm between 1980 

and 2050 outside of the 

months of March and 

December. It should be 

noted that the most 

extreme cold, which 

occurs in March, remains 

in both the lower and 

higher climate scenario for 

2050. This is likely due to 

the seasonally varying 

delta described in step 4 

and preservation of these 

cold extremes is important 

for stress testing power 

systems during winter 

months. 

 

Validation 
Validation of this method is a critical step prior to application, to demonstrate confidence in the resulting profiles 

(since power system decisions may be made from models based on these synthetic profiles). Below, a validation 

exercise shows that the synthetic data for Denver, CO matches the benchmark climate model distribution very 

closely, with the largest 

differences being near the 

middle of the distribution 

(Figure 5). The tails of the 

distribution are particularly 

well captured, which is 

critical for most future 

power system applications.  

A slightly different look at 

how the synthetic profiles 

compare to climate models 

is shown in Figure 6 for 

Atlanta, GA. The boxplots 

for the synthetic profiles 

generally match the climate 

models very well from 

December through May, 

but the mean is lower than the models from June through November and the warm extremes during the summer 

months aren’t as well captured as for the Denver, CO example. However, the cold extremes are much more 

Figure 4: Comparison of 1980 shifted to 2050 for a single model (MRI model) and two different 
climate scenarios (SSP126 and SSP370) for Atlanta, GA. 

Figure 5: Comparison of the cumulative distribution functions (CDF) for the historical data (1950 – 
2021), climate model projections (2036 – 2065) and 720 synthetic profiles for 2050 for Atlanta, GA. 



 
 

 

prominent in the synthetic data 

than the climate model data 

and for many power system 

applications this offers the 

advantage of not overlooking 

the possibility of extreme cold 

events. While not all locations 

will have hot or cold tails in the 

synthetic profiles that match 

the climate models, small 

tweaks in the bias-correction 

technique could improve the 

representation of extremes. 

This preliminary validation 

suggests this approach could be 

very useful when needing 

hourly timeseries for future 

years. 

 
 
Discussion and Conclusion 
Climate projections are available at a daily resolution, but they are inherently probabilistic. This means we 
shouldn’t take the output of a climate model for the year 2050 and assume that particular scenario will play out 
as shown by the model. Rather, multiple models, emissions scenarios, and years surrounding 2050 should be 
examined to get a better idea of what a year in the 2050 timeframe might look like. Because of the probabilistic 
nature of projections, the information that is often most critical to capture from the models are the long-term 
trends and changes in the tails of the distribution, not the actual values on any given day.  
 
While GCM projections lack the hourly resolution that is often necessary for company planning, they can be 
leveraged to create realistic synthetic future scenarios that preserve the critical characteristics of the data, namely 
the trends and extremes. There are several benefits to doing this in that it captures real-world variability from a 
long historical record and creates potentially 1000s of realistic climate-adjusted profiles. This method also 
preserves the physical link between synchronous meteorological variables which is critical as many hazards that 
pose a risk to the system are comprised of multiple variables. While all variables are generally available in the 
historical period, climate models are limited in the number of output variables which means end-users need to 
pull additional variables from different models. Lastly, it can include historical years in future scenarios as a lower 
bound for risk assessments particularly concerned with the impact of extreme cold on the power system. 
 
There are limitations to this approach that should be considered. Firstly, this method is best suited for single points 
as spatial coherence may be impacted by the point-based approach. It remains to be shown whether the spatial 
continuity among grid cells is sufficiently preserved when the quantile-delta mapping is conducted at the 
individual cell-level. Alternative approaches could be explored to consider the distribution of surrounding cells to 
better reflect the spatial relationship. Secondly, this approach is also applied to individual variables which could 
impact the relationship between variables. Because not all variables are expected to change significantly, like wind 
speeds, and not all variables are represented by climate models, like 100 m wind speeds, these variables can be 
left as they are in the historical period. However, as other variables change, the relationship between variables 

Figure 6: Comparison between the historical distribution (1950 – 2021), climate model 
projections (2036 – 2065) and 720 synthetic profiles for 2050 for Atlanta, GA. 
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may also change. In this case, multivariate bias correction may be more appropriate.  
 
Future work will focus on validation of these synthetic profiles against the climate models as well as other 
approaches. Specifically, a more detailed comparison of the statistical properties (e.g., variability and extreme 
event characteristics) of these synthetic profiles versus the native daily GCM projections, as well as a deeper dive 
into how well the synthetic profiles represent extremes like heat waves, cold events, and droughts, is needed. It 
will also be beneficial to explore alternative approaches to help identify when different methods are more 
appropriate for the application at hand. Some of these approaches are rather simple, like applying a fixed 
stationary adder (e.g., +5°F) to all historical 8760s to represent a future year when temperatures are projected to 
be 5°F higher on average, or temporal downscaling by linear interpolation between the climate models’ daily min, 
max, and mean values to create hourly data. Others are more complex, such as the method outline in this article, 
or the use of regional climate models (RCM) initialized with daily climate model data to produce output variables 
with hourly resolution.  
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Appendix 
 

 
Figure A1: Comparison of the cumulative distribution functions (CDF) for the historical data (1950 – 2021), climate model projections 
(2036 – 2065) and 720 synthetic profiles for 2050 for Denver, CO. 

 
Figure A2: Comparison between the historical distribution (1950 – 2021), climate model projections (2036 – 2065) and 720 synthetic 
profiles for 2050 for Denver, CO. 


